Skip to content

Mid1

DC Motor

  • emf voltage: \(e\)
  • armature current: \(i_a\)
  • viscous friction coefficient: \(b\)
  • inertia: \(J_m\)
\[ \begin{gather} \tau = K_t\ i_a \\\\ e = K_e\ \dot\theta_m \\\\ K_t = K_e \ (\text{for same unit}) \end{gather} \]
  • Modeling
    • voltage across motor: \(v_a\)
\[ \begin{gather} \tau = J_m\ddot\theta + b\dot \theta = K_t\ i_a \\\\ v_a = L_a\ i_a' + r_a i_a + K_e\ \dot\theta_m \end{gather} \]

Mason's Rule

\[ \begin{gather} G(s) = \frac{V(s)}{U(s)}= \frac{\sum_i{G_i\ \Delta_i}}{\Delta} \end{gather} \]
\[ \begin{align} \Delta = 1 &- \text{sum of all individual loop gains} \\\\ &+ \text{sum of gain products of all possible two loops which do not touch} \\\\ &- \text{sum of gain products of all possible three loops which do not touch} \\\\ &+ \dots \end{align} \]
  • path gain of the \(i\)th forward path \(G_i\)
  • value of \(\Delta\) for the part of the signal-flow graph that does not touch the \(i\)th forward path.

  • see example.


Second System Response

Transfer function

\[ \begin{gather} H(s) = \frac{w_{n}^{2}}{s^{2}+2\zeta \omega_n s + \omega_n^{2}} \end{gather} \]
  • Poles:
    • \(\sigma = \zeta \omega_n\)
    • \(\omega_d = \omega_n\sqrt{1-\zeta^{2}}\)
\[ \begin{gather} s = - \zeta \omega_n \pm j \omega_n\sqrt{1-\zeta^{2}} = -\sigma \pm j\omega_d \end{gather} \]

Unit Step Input

\[ \begin{gather} Y(s) = \frac{1}{s}H(s) = \frac{1}{s} - \frac{s+2\zeta \omega_n}{s^{2}+2\zeta \omega_n s + \omega_n^{2}} \end{gather} \]

after some trivial calculation,

\[ \begin{gather} y(t) = 1 - K\ e^{-\sigma t}\ \sin(\omega_dt + \theta) \end{gather} \]

note that \(K\) is not important.


Peak Time

  • peak Time \(t_p\)
\[ \begin{align} y' &= 0 \\\\ y' &= K' e^{-\sigma t}\sin(\omega_d t) \end{align} \]

Max Overshoot

max overshoot happens at \(\omega_d \ t_p = \pi\)

\[ \begin{gather} t_p = \frac{\pi}{\omega_d} \end{gather} \]
  • overshoot \(M_p\) (memorize directly)
\[ \begin{align} y(t_p) &= 1 + M_p \\\\ &= 1 + e^{-\sigma\pi/\omega_d} \end{align} \]
\[ \begin{gather} \implies M_p = e^{-\sigma\pi/\omega_d} = e^{-\sigma\, t_p} \end{gather} \]

rise time

  • \(t_r \equiv t_2 - t1\)
  • for characteristic equation: \(s+1/\tau\)
\[ \left\{ \begin{gather} e^{-t_1/\tau}=0.9 \\\\ e^{-t_2/\tau}=0.1 \end{gather}\right. \]
\[ \begin{gather} t_r=t_2-t_1=\tau(-\ln0.1-(-\ln0.9))=\tau\ln9\approx2\tau \end{gather} \]
  • for characteristic equation: \(s^{2}+2\zeta \omega_n+\omega_n^{2}\)
\[ \begin{align} t_r &\approx \frac{1.8}{\omega_n} \\\\ &\approx \frac{0.8+1.1\zeta+1.4 \zeta^{2}}{\omega_n} \end{align} \]

settling time

  • \(t_s\) (for steady state error 1%)

  • for characteristic equation: \(s+1/\tau\)

\[ \begin{gather} e^{-t_s/\tau} = 0.01 \\\\ \implies -t_s/\tau = \ln0.01 \\\\ t_s = -\ln 0.01 \tau \approx 4.6 \tau \end{gather} \]
  • for characteristic equation: \(s^{2}+2\zeta \omega_n+\omega_n^{2}=(s-(\sigma+j\omega_d))(s-(\sigma-j\omega_d))\)
\[ \begin{gather} t_s = -\frac{\ln 0.01}{\sigma} \end{gather} \]

Extra zero

\[ \begin{gather} H(s) = K\frac{s+\alpha\sigma}{(s+(\sigma+j\omega_d))(s+(\sigma-j\omega_d))} \end{gather} \]

when \(\alpha\) is small (\(\alpha <4\)), the extra zero would increase the overshoot \(M_p\).

when \(\alpha \to \infty\), zero would be trivial.

Extra pole

\[ \begin{gather} H(s) = K\frac{1}{(s+\alpha \sigma)(s+(\sigma+j\omega_d))(s+(\sigma-j\omega_d))} \end{gather} \]

when \(\alpha\) is small (\(\alpha < 4\)), the extra pole decrease the rising time \(t_r\).

when \(\alpha \to \infty\), the extra pole is trivial.


Final Value Theorem

  • poles have to be on left-half plane (converge)
\[ \begin{gather} y(\infty) = \left[sY(s)\right]_{s\to 0} \end{gather} \]

proof:

\[ \begin{gather} L\left\{y'\right\}_{s\to0} =\left[sY(s)-y(0)\right]_{s\to 0}= \int_0^{\infty}{e^{-st}y' dt} = \int_0^{\infty}{y'dt} = y(\infty) - y(0) \\\\ \implies \left[sY(s)\right]_{s\to0} = y(\infty) \end{gather} \]
  • Initial value theorem
\[ \begin{gather} \left[sF(s)\right]_{s\to \infty} = f(0^+) \\\\ \end{gather} \]

proof is similar to final value theorem.

Routh-Hurwitz stability criterion

\[ \begin{gather} s^{n} + a_1 s^{n-1} + a_2 s^{n-2} +\dots + a_{n-1}s +a_n=0 \end{gather} \]

The system would be stable iff the elements of the first column (\(a_1, b_1, c_1, \dots\)) are all positive.

In addition, for a stable system, the coefficients of polynomial are all positive (not even \(0\)).

A simple explanation is that for a stable system which have its all roots at L.H.P, we can write

\[ \begin{gather} (s+n_1)(s+n_2)(s+n_3)\dots \cdot (s+n_n)=0 \end{gather} \]

  • # of roots in the RHP == # of sign changes in the first column.
example 3.32
\[ \begin{gather} a(s) = s^{6} + 4s^{5}+3s^{4}+2s^{3}+s^{2}+4s+4 \end{gather} \]
  • first column
\(s^{6}\) 1
\(s^{5}\) 4
\(s^{4}\) 5/2
\(s^{3}\) 2
\(s^{2}\) 3
\(s^{1}\) -76/15
\(s^{0}\) 4

There are two sign changes, \(s^{2}\) to \(s^{1}\), and \(s^{1}\) to \(s^{0}\).

Thus, There are two roots in RHP