Skip to content

Mid2

Sensitivity

  • sensitivity of transfer function \(T\) w.r.t. its parameter \(K\): \(S_K^{T}\)
\[ \begin{gather} S_K^{T}=\frac{\frac{dT}{T}}{\frac{dK}{K}}=\frac{d\ln T}{d\ln K}=\frac{K}{T}\frac{dT}{dK} \end{gather} \]

System Type for Tracking

Reference Tracking

  • Tracking definition
    the output \(Y(s)\) follow any reference input \(R(s)\) as closely as possible.
\[ \begin{gather} E = R - Y \to 0 \\\\ E(s) = R\left(1-\frac{DG}{1+DG}\right)=\frac{1}{1+DG}R \end{gather} \]
  • System Classification
    for type \(k\), we have the input \(R\) as
\[ \begin{gather} r(t)=\frac{1}{k!}t^{k} 1(t) \iff R(s)=\frac{1}{s^{k+1}} \end{gather} \]


such that

\[ \begin{gather} e(\infty) = \text{const} \neq 0 \end{gather} \]

  • type \(0\)
\[ \begin{align} e(\infty)&= \bigg[s E(s)\bigg]_{s\to0} \\\\ &=\bigg[s\frac{1}{1+DG}R(s)\bigg]_{s\to0} \\\\ &=\bigg[s\frac{1}{1+DG}\frac{1}{s}\bigg]_{s\to0} \\\\ &=\frac{1}{1+D(0)G(0)} = \frac{1}{1+K_p} \end{align} \]
  • \(K_p\) : position error constant

  • type \(1\)
\[ \begin{align} e(\infty)&= \bigg[s E(s)\bigg]_{s\to0} \\\\ &=\bigg[s\frac{1}{1+DG}R(s)\bigg]_{s\to0} \\\\ &=\bigg[s\frac{1}{1+DG}\frac{1}{s^{2}}\bigg]_{s\to0} \\\\ &=\bigg[\frac{1}{s+sDG}\bigg]_{s\to0}= \frac{1}{K_v} \end{align} \]
\[ \begin{gather} \\\\ \implies D(s)G(s) = \frac{1}{s}J(s) \\\\ \implies K_v = J(0) \end{gather} \]
  • \(K_v\) : velocity constant

  • type \(2\)
\[ \begin{align} e(\infty)&= \bigg[s E(s)\bigg]_{s\to0} \\\\ &=\bigg[s\frac{1}{1+DG}R(s)\bigg]_{s\to0} \\\\ &=\bigg[s\frac{1}{1+DG}\frac{1}{s^{3}}\bigg]_{s\to0} \\\\ &=\bigg[\frac{1}{s^{2}+s^{2}DG}\bigg]_{s\to0}= \frac{1}{K_a} \end{align} \]
\[ \begin{gather} \\\\ \implies D(s)G(s) = \frac{1}{s^{2}}J(s) \\\\ \implies K_a = J(0) \end{gather} \]

- \(K_a\) : acceleration constant

Disturbance Rejection

We hope to reject the disturbance \(W(s)\). Thus, to determine the system type w.r.t. \(W\), first ignoring the effect of \(R\) by giving \(R(s)=0\).

\[ \begin{gather} E(s)=R-Y=-Y \\\\ Y=\frac{G}{1+GD}W \end{gather} \]

then

\[ \begin{gather} E(s)=\frac{-G}{1+GD}W \end{gather} \]

PID Controller

  • P (Proportional)
\[ \begin{gather} D_{cl}(s)=\frac{U(s)}{E(s)}=k_p \end{gather} \]

I (Integral)

\[ \begin{gather} D_{cl}(s)=\frac{U(s)}{E(s)}=\frac{k_I}{s} \end{gather} \]
  • fix steady-state error (with \(K_I \neq 0\), \(e_{ss}= 0\))

D (Derivative)

\[ \begin{gather} D_{cl}(s)=\frac{U(s)}{E(s)}=sk_D \end{gather} \]
  • make the damping coefficient \(\zeta\uparrow\), then the stability \(\uparrow\), overshoot \(\downarrow\)
  • has no effect on stead-state error

  • PI (P + I)
\[ \begin{gather} U(s)=E(s)k_P + \frac{k_I}{s} \iff u=k_Pe+k_I\int{e(\tau)\,d\tau} \\\\ D_{cl}(s)=\frac{U(s)}{E(s)}=sk_D \end{gather} \]

Root Locus

for the characteristic equation, all of these equations are equivalent.

\[ \begin{gather} 1+KL(s)=0 \\\\ 1+K\frac{(s-z_1)(s-z_2)(s-z_3)\dots \cdot}{(s-p_1)(s-p_2)(s-p_3)\dots \cdot}=0 \\\\ \bigg((s-p_1)(s-p_2)\dots \cdot\bigg)+K\bigg((s-z_1)(s-z_2)\dots \cdot\bigg)=0 \\\\ \frac{1}{K}\bigg((s-p_1)(s-p_2)\dots \cdot\bigg)+\bigg((s-z_1)(s-z_2)\dots \cdot\bigg)=0 \end{gather} \quad \begin{aligned} \text{(1)} \\\\\\ \text{(2)} \\\\\\ \text{(3)} \\\\\\ \text{(4)} \\\\ \end{aligned} \]
  • Rule 1: Find zeros and poles.
    \(K=0\), i.e. start of the root locus is located at the poles (observing (3))
    \(K=\infty\), i.e. end of the root locus is located at the zeros (observing (4))
  • Rule 2: Find the real axis positions of the locus.
    Let \(s=s_0\), for \(s_0 \in ℝ\)
\[ \begin{gather} \angle L(s_0)=(\psi_{z1}+\psi_{z2}+\dots+)-(\phi_{p1}+\phi_{p2}+\dots +)=\pi,\, -\pi, \, 3\pi,\, -3\pi, \dots \end{gather} \]

if none of \(s_0\) satisfy the equation above then the root locus is not on the real axis.
Otherwise, we can solve the range of \(s_0\)

  • Rule 3: Find the asymptotes for large \(K\)
    When \(K\to \infty\), there is not only the result show in Rule 1 (\(s\) is finite)
    Consider (2), for \(K, s\) is large we can modify (2) as
\[ \begin{gather} \left[1+K\frac{(s-z_1)(s-z_2)(s-z_3)\dots \cdot}{(s-p_1)(s-p_2)(s-p_3)\dots \cdot}\right]_{s\to\infty}=0 \\\\ \implies 1+K\frac{s^{(\text{\# of zeros})}}{s^{(\text{\# of poles})}}=0 \\\\ \implies 1+Ks^{m-n}=0 \\\\ \implies s^{n-m}+K=0 \end{gather} \]
  • for \(n-m = 0\),
\[ \begin{gather} K\neq 0 \end{gather} \]

In this case there is no asymptote. As Rule 1 says, all root go from poles to finite zeros.

- for \(n-m =1\)

\[ \begin{gather} s=-K=-\infty \end{gather} \]

this indicates that there is an imaginary zero at \(-\infty\).

  • for \(n-m > 1\)
\[ \begin{gather} s^{n-m}=-K = K\angle \pi \\\\ \implies s= k \angle(\frac{\pi+ℓ\cdot2\pi}{n-m}) \\\\ k=K^{1/(n-m)}=\infty \end{gather} \]

e.g. \(n-m=3\)

\[ s= \left\{ \begin{gather} &k\angle \frac{\pi}{3} \\\\ k\angle \frac{3\pi}{3} = &k\angle\pi \\\\ &k\angle \frac{-\pi}{3} \end{gather}\right. \]

note that this result only tell us there are three imaginary zeros at different directions of \(\infty\).
However, the source (intersection) is no need to be at the origin (\(s=0\)). This is because, for a finite \(s_0 <0\).

\[ s_0 = m\angle\pi \implies \left\{ \begin{gather} (k\angle \frac{\pi}{3}-s_0)=k\angle \frac{\pi}{3} \\\\ (k\angle \pi-s_0)=k\angle \pi \\\\ (k\angle \frac{-\pi}{3}-s_0)=k\angle \frac{-\pi}{3} \end{gather}\right. \]

Thus we can write the asymptotes as

\[ \begin{gather} \bigg((s-p_1)(s-p_2)\dots \cdot\bigg)+K\bigg((s-z_1)(s-z_2)\dots \cdot\bigg)=0 \\\\ \iff \bigg(s^{n}+as^{n-1}+\dots+\bigg)+K\bigg(s^{m}+bs^{m-1}+\dots+\bigg)=0 \\\\ \implies \sum{p_i}=-a \end{gather} \]
\[ \begin{gather} \bigg(s^{n}+as^{n-1}+\dots+\bigg)+K\bigg(s^{m}+bs^{m-1}+\dots+\bigg)=0 \\\\ \iff s^{n}+as^{n-1}+\dots+K\bigg(s^{m}+bs^{m-1}+\dots+\bigg)=0 \\\\ \iff (s-r_1)(s-r_2)\dots\cdot(s-r_n)=0 \\\\ \implies \sum{r_i}=-a \\\\ \implies \sum{r_i}=-a=\sum{p_i} \end{gather} \]

now rewrite the characteristic equation

\[ \begin{gather} \bigg[1+K\frac{(s-z_1)(s-z_2)(s-z_3)\dots \cdot}{(s-p_1)(s-p_2)(s-p_3)\dots \cdot}\bigg]_{s\to \infty} \approx 1+K\frac{1}{(s-\alpha)^{n-m}}=0 \\\\ \implies (s-\alpha)^{n-m}+K=0 \\\\ \iff (s-r_1)(s-r_2)\dots\cdot(s-r_{n-m})=0 \\\\ \implies \sum_{i=1}^{n-m}{r_i}=-(-(n-m)\alpha)=(n-m)\alpha \end{gather} \]

notice that all of the roots go from poles to zeros, therefore for \(n> m\) case, there are some poles go to infinite imaginary zeros.
Thus we have

\[ \begin{gather} \sum(\text{all roots})=\sum(\text{roots go to finite zeros})+\sum{(\text{roots go to infinte img. zeros})} \end{gather} \]
\[ \begin{align} \\ \implies \sum_{i=1}^{n}{r_i}&=\sum_{i=1}^{m}{z_i}+\sum_{i=m+1}^{n}{z_{img, i}} \\\\ &= \sum{z_{i}}+(n-m)\alpha \end{align} \]
\[ \begin{gather} \\ \implies \alpha = \frac{\sum{r_i}-\sum{z_i}}{n-m}= \frac{\sum{p_i}-\sum{z_i}}{n-m} \end{gather} \]
  • Rule 4: departure and arrival angle

    • for departure angle take \(s_0 \to p_i\) and solve \(\angle L(s_0)=n\pi\)
    • for departure angle take \(s_0 \to z_i\) and solve \(\angle L(s_0)=n\pi\)
  • Rule 5: points on Image(\(j\omega\)) axis
    similar to rule 2, just let \(s_0 = j\omega_0\) and try to solve the characteristic equation.

  • Rule 6: find breakaway points (location of multiple roots)
    consider there is a multiple roots \(r_1\) then we can write

\[ \begin{gather} 1+KL(s)=0 \\\\ \implies a(s) + Kb(s) \equiv (s-r_1)^{p}(s-r_2)\cdot \dots \cdot = 0 \\\\ \frac{d}{ds}\bigg[a(s)+Kb(s)\bigg]_{s=r_1}=p(s-r_1)^{p-1}(s-r_2)\cdot \dots \cdot = 0 \end{gather} \]

thus, by solving the equation

\[ \begin{gather} \frac{d}{ds}\bigg[a(s)+Kb(s)\bigg]=0 \end{gather} \]

we can probably find the breakaway point \(r_1\).