Skip to content

Antenna

Antenna Characteristics

Radiation Intensity

\[ \begin{gather} U(\theta, \phi) \equiv r^{2} P_{avg} \end{gather} \]
  • independent to \(r\)

  • represent the power density at particular direction.

\[ \begin{gather} P_{rad} = \int_S r^{2}\vec P_{avg}\cdot d\vec S = \int_\Omega U \, d\Omega \\\\ \implies P_{rad} = 4\pi U_{avg} \end{gather} \]

Directive Gain

\[ \begin{gather} G_d(\theta, \phi) = \frac{U(\theta, \phi)}{U_{avg}} \end{gather} \]
  • normalized version of \(U\).

Directivity

\[ \begin{gather} D = \max\big\{ G_d{(\theta, \phi)} \big\} \end{gather} \]
  • sharpness criteria for antenna

Power Gain & Efficiency

  • in average

    • efficiency
    \[ \begin{gather} \eta_r = \frac{P_{rad}}{P_{in}} \end{gather} \]
    • power gain
    \[ \begin{gather} G_{p-avg}=\eta_r = \frac{P_{rad}}{P_{in}} \end{gather} \]
  • at particular direction

    • power gain
    \[ \begin{gather} G_{p}(\theta, \phi) = \frac{4\pi U(\theta, \phi)}{P_{in}} \end{gather} \]

Effective Aperture

  • isotropy
\[ \begin{gather} A_{iso} = \frac{\lambda^{2}}{4\pi} \end{gather} \]
  • effective
\[ \begin{gather} A_e = A_{iso} D = \frac{\lambda^{2}}{4\pi}D \end{gather} \]

Beam Solid Angle

\[ \begin{gather} \Omega_A = \frac{P_{rad}}{U_{max}} \end{gather} \]

fff

Hertain dipole

\[ \begin{align} H_{\phi s } &= \frac{j\beta I_0 \,dℓ}{4\pi r} \sin \theta \,e^{-j\beta r} \\\\ E_{\theta s} &= \eta H_{\phi s } \end{align} \]

Half wave

\[ \begin{align} H_{\phi s} &= \frac{jI_0 \, e^{-j\beta r}}{2\pi}\frac{\cos\big[\cos\theta\big]}{r\sin\theta} \\\\ E_{\theta s} &= \eta H_{\phi s } \end{align} \]

Radar

\[ \begin{align} 𝔓_i &= \frac{P_{rad}}{4\pi r^{2}}G_d \\\\ 𝔓_s &= \lim_{r\to \infty}\frac{𝔓_i\,\sigma}{4\pi r^{2}} \end{align} \]