Skip to content

Boundary Value Problem

Boundary Value Problem

  • 2D Fourier Series
2D Fourier Series

2D Fourier Series

  • \(p\) is a half of period
\[ \begin{gather} f(x,y) = \sum{c_{mn}e^{jmx}e^{jny}} \\\\ c_{mn} = \frac{1}{2p_x}\frac{1}{2p_y}\int_{Py}\int_{Px}{f(x, y)e^{-jmx}e^{-jny}\ dxdy} \end{gather} \]

2D Fourier Sine Series

  • \(p\) is a half of period
\[ \begin{gather} f(x,y) = \sum_{n, m \in ℕ}{b_{m, n}\sin{\frac{n\pi}{p_x} x}\,\sin{\frac{n\pi}{p_y} y}} \\\\ b_{m, n} = \frac{2}{p_x}\frac{2}{p_y}\int_{P_y}\int_{P_x}{f(x,y)\sin{\frac{n\pi}{p_x}x}\,\sin{\frac{n\pi}{p_y}y}\,dxdy} \end{gather} \]

Possion's Equation

\[ \begin{gather} \nabla^{2}V=-\frac{\rho_v}{\varepsilon_0} \end{gather} \]

we can solve Possion's equation by superposition which similar to how we solve non-homogeneous differential equation.

let \(V = V_L + V_P\), in which \(V_L\) indicates the homogeneous differential equation case (\(\rho_v = 0\)) i.e., Laplace's equation.

\[ \begin{gather} \nabla^{2} V_L =0 \end{gather} \]

as for the \(V_P\) indicates the homogeneous boundary conditions, i.e., \(\forall \,\text{boundary }V_b = 0\)

\[ \begin{gather} \nabla^{2}V_P=-\frac{\rho_v}{\varepsilon_0} \end{gather} \]

assume that

\[ \begin{gather} V_p = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}{A_{mn}\sin{\frac{m\pi x}{b}}\sin{\frac{n\pi y}{a}}} \\\\ \rho_v = \sum_{m=1}^{\infty}\sum_{n=1}^{\infty}{C_{mn}\sin{\frac{m\pi x}{p_x}}\sin{\frac{n\pi y}{p_y}}} \end{gather} \]

notice that usually \(C_{mn}\) is known, but the \(A_{mn}\) is unknown

for \(C_{mn}\)

\[ \begin{gather} C_{mn} = \frac{2}{p_x}\frac{2}{p_y}\int_X\int_Y {\rho_v\sin\frac{m\pi x}{p_x}\sin\frac{n\pi y}{p_y}dxdy} \end{gather} \]
\[ \begin{align} \nabla^{2}V_P=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}{A_{mn}\left[\left(\frac{m\pi}{p_x}\right)^{2}+\left(\frac{n\pi}{p_y}\right)^{2}\right]\sin{\frac{m\pi x}{b}}\sin{\frac{n\pi y}{a}}} \end{align} \]
\[ \begin{gather} \implies A_{mn} \end{gather} \]

3D Laplace's Equation

Cartesian

\[ \begin{gather} V(x, y, z) = X(x) Y(y) Z(z) \\\\ \end{gather} \]
\[ \begin{gather} \nabla^{2}V = 0 \\\\ \frac{X''}{X}+\frac{Y''}{Y}+\frac{Z''}{Z} =-k_x^{2}-k_y^{2}-k_z^{2} = 0 \end{gather} \]
\[ \implies \left\{ \begin{gather} X''+k_x^{2}X &= 0 \\\\ Y''+k_y^{2}Y &= 0 \\\\ Z''+k_z^{2}Z &= 0 \\\\ k_{x}^{2}+k_y^{2}+k_z^{2} &= 0 \end{gather}\right. \]

Cylindrical

\[ \begin{gather} V(\rho, \phi, z) = P(\rho)\Phi(\phi)Z(z) \\\\ \nabla^{2}V=\frac{1}{\rho}\frac{\partial}{\partial \rho}\left(\rho V_\rho\right)+\frac{1}{\rho^{2}}V_{\phi\phi}+V_{zz} = 0 \\\\ \frac{\nabla^{2}V}{P\Phi Z}=\frac{1}{\rho}\left(\rho \frac{P''}{P}+\frac{P'}{P}\right)+\frac{1}{\rho^{2}}\frac{\Phi''}{\Phi}+\frac{Z''}{Z} =0 \\\\ \implies \frac{1}{\rho}\left(\rho \frac{P''}{P}+\frac{P'}{P}\right)+\frac{1}{\rho^{2}}\frac{\Phi''}{\Phi}=-\frac{Z''}{Z} \equiv \mathbf{-\lambda^{2}} \\\\ \rho^{2} \frac{P''}{P}+\rho\frac{P'}{P}+\rho^{2}\lambda^{2}=-\frac{\Phi''}{\Phi} \equiv \mu^{2} \\\\ \end{gather} \]

$$ \implies \left{ \begin{gather} Z''-\lambda^{2}Z=0 \\ \Phi'' + \mu^{2}\Phi = 0 \\ \rho^{2}P'' + \rho P' + \left(\rho{2}\lambda - \mu^{2}\right)P = 0 & #Eq3 \end{gather}\right. $$

in which Eq. 3 is a Bessel Function

notice that if \(\lambda = 0\) (e.g. the situation that \(V\) is independent of \(z\)), Eq. 3 would be an Euler-Cauchy Equation, rather than Bessel.

for \(\lambda > 0\), let \(x=\rho\lambda\) and \(y=P\)

note that

\[ \begin{gather} dx=d(\rho\lambda)=\lambda d\rho \\\\ y'=\frac{dy}{dx}=\frac{dP}{dx}=\frac{1}{\lambda }\frac{dP}{d\rho} \end{gather} \]

Eq.3 become

\[ \begin{gather} x^{2}y''+xy+(x^{2}-\mu^{2})y=0 \end{gather} \]