Skip to content

Electrostatics

Gauss's Law

\[ \begin{gather} \Phi = Q_{enc} \\\\ \Phi = \oint_S{\vec D \ \cdot\ d\vec S} = \int_v{ \nabla \cdot \vec D\ dv} = \int_v{\rho_v \ dv} \\\\ \nabla \cdot \vec D = \rho_v \end{gather} \]

Electric Field

Electric dipole

  • Dipole moment: \(\vec p\)
\[ \begin{gather} \vec p = Q\vec d \\\\ V = \frac{Q}{4\pi \varepsilon}\cdot \frac{d \cos\theta}{r^{2}} = \frac{\vec p \cdot \hat {a_r}}{4\pi \varepsilon r^{2}}= \frac{\vec p \cdot \vec {r}}{4\pi \varepsilon r^{3}} \\\\ \end{gather} \]

note that \(\hat{a_r}\) is unit vector.

\[ \begin{align} \vec E &= -\nabla V \\\\ &= - \left[\frac{\partial V}{\partial r} \hat r \ +\frac{1}{r}\frac{\partial V}{\partial \theta}\hat \theta \ \right] \\\\ &= \frac{p}{4\pi \varepsilon r^3}(2\cos \theta \ \hat r\ + \sin\theta\ \hat \theta\ ) \end{align} \]

Polarization

  • Polarization vector: \(\vec P\)
\[ \begin{gather} \vec P \equiv \chi_e \ \varepsilon_0\ \vec E \end{gather} \]
  • surface bound charge density: \(\rho_{ps}\)
    • the direction \(\hat {a_n}\) is outgoing the volume which contain charge
\[ \begin{gather} \rho_{ps} = \vec P \cdot \vec{a_n} \end{gather} \]
  • volume bound charge density: \(\rho_{pv}\)
\[ \begin{gather} \rho_{pv} = -\nabla \cdot \vec P \end{gather} \]
  • Electric flux density field \(D\)
\[ \begin{align} \rho_v &= \rho_{\text{total}}-\rho_{pv} \\\\ \implies \nabla \cdot \vec D &= \nabla \cdot \left(\varepsilon_0\vec E \right) - (- \nabla \cdot \vec P) \\\\ \implies \vec D &= \varepsilon_0\ \vec E + \vec P \\\\ &= \varepsilon_0 (1 + \chi_e) \vec E \\\\ &= \varepsilon_r\ \varepsilon_0\ \vec E \\\\ &= \varepsilon\ \vec E \end{align} \]

Electric Potential

\[ \begin{align} V_{AB} &= -\int_A^{B}{\vec E \ \cdot\ d\vec l}=V_B - V_A \\\\ &= \int_A^{B}{dV}=\int_A^{B}{ \vec\nabla V \cdot d \vec l} \end{align} \]

implies,

\[ \begin{gather} \vec E = - \nabla V \\\\ \end{gather} \]
  • by Stokes' Theorem
\[ \begin{gather} \oint_L{\vec E \cdot d \vec l = \int_S (\nabla \times \vec E)\cdot d \vec S} = 0 \\\\ \implies \nabla \times \vec E =0 \end{gather} \]

Electric Energy

  • \(W_E\) : Energy stored in the capacitor

  • discrete charges

\[ \begin{gather} W_E = \frac{1}{2}\sum{Q_k V_k} \end{gather} \]
  • continuous charges
\[ \begin{align} W_E &= \int_v{\rho_v V(\vec r) dv} \\\\ &=\frac{1}{2}\int_v{(\nabla \cdot \vec D)V \ dv} = \frac{1}{2}\left(\int_v{\nabla \cdot (\vec D \,V)\ dv}-\int_v{\vec D \cdot (\nabla V)\ dv} \right) \\\\ &= \frac{1}{2}\left(\oint_S{V\vec D\ \cdot d\vec S} + \int_v{\vec D \cdot \vec E\ dv}\right) \end{align} \]

consider \(S = U\) (Universe), then

\[ \begin{gather} \oint_S{V\vec D\ \cdot d\vec S} \to 0 \\\\ \implies W_E = \frac{1}{2}\int_U{\vec D\cdot \vec E \ dv} \end{gather} \]

Conduction Current

  • Definition: Charge flows due to \(\vec E\)

  • force on electron \(F_e\)

\[ \begin{gather} \vec F_e = -e\vec E \end{gather} \]
  • friction \(F_r\)
\[ \begin{gather} \vec F_r = \frac{\Delta p}{\Delta t} =- \frac{m\vec u}{\tau} \end{gather} \]
\[ \begin{gather} \vec F_e + \vec F_r = 0 \\\\ \implies \frac{m\vec u}{\tau} = -e \vec E \end{gather} \]
  • mean free time \(\tau\)
  • average drift velocity \(\vec u\)
\[ \begin{gather} \vec u = - \frac{e\tau}{m}\vec E = -\mu_e \vec E \end{gather} \]

Current Density

  • current view:
\[ \begin{gather} \vec J = \frac{\partial I}{\partial \vec S} \end{gather} \]
  • convection current view:
\[ \begin{gather} \vec J = \rho_v \vec u=(-ne)\left(-\frac{e\tau}{m}\right)\vec E \end{gather} \]
  • Ohm's law view:
\[ \begin{gather} \because I = YV \\\\ \vec J = \sigma \vec E \end{gather} \]
  • conductivity \(\sigma\)

Continuity Equation

\[ \begin{gather} I_{net} = -\frac{d}{dt}Q = -\frac{d}{dt}\int_v{\rho_v\, dv} \\\\ I_{net} = \oint_S{\vec J \cdot \vec S} = \int_v{\nabla \cdot \vec J\, dv} \\\\ \implies \nabla \cdot \vec J = - \frac{d}{dt}\rho_v \end{gather} \]
note

collapse: true

Recall that the physical meaning of divergence,

\[ \begin{gather} \nabla \cdot \vec A 0 & \text{(source)} \\\\ \nabla \cdot \vec A < 0 & \text{(sink)} \end{gather} \]

It is reasonable to write \(\mathbf{-}\rho_v'\) for a charge source.

Also intuitive for steady current have

\[ \begin{gather} \nabla \cdot \vec J = 0 \end{gather} \]

Relaxation Time

  • relaxation time \(\tau\)
  • view from solving differential equation
\[ \begin{gather} \nabla \cdot \vec J = -\frac{d}{dt}\rho_v = \nabla \cdot (\sigma \vec E) = \frac{\sigma}{\varepsilon}\nabla \cdot \vec D = \frac{\sigma}{\varepsilon}\rho_v \\\\ -\frac{\sigma}{\varepsilon} dt = \frac{d\rho_v}{\rho_v} \\\\ \implies \rho_v = \rho_{o}\exp\left(-\frac{\sigma}{\varepsilon}t\right) = \rho_o e^{-t/\tau} \\\\ \implies \tau = \frac{\varepsilon}{\sigma} \end{gather} \]
  • view from having \(\tau = RC\)
\[ \begin{gather} \tau = RC = \frac{V}{I}\frac{Q}{V}=\frac{\int{\varepsilon\vec E \cdot d\vec S}}{\int{\sigma\vec E\cdot d\vec S}}=\frac{\varepsilon}{\sigma} \end{gather} \]

Boundary Condition

for there is no surface charge density

\[ \begin{gather} \nabla \cdot (\rho_S \,\vec{a_n})=0 \\\\ \implies \nabla \cdot \vec D=0 \\\\ \vec J=\sigma\vec E \\\\ \implies \vec\nabla \cdot \vec J=0 \end{gather} \]

implies

\[ \begin{gather} D_{1n} = D_{2n} \\\\ J_{1n}=J_{2n} \end{gather} \]
  • tangent direction

for the closed-loop in conservative field, we have

\[ \begin{gather} \because \oint_c{\vec E \cdot d\vec l}=0 \end{gather} \]

then

\[ \begin{gather} \vec E_1 = \vec E_2 \\\\ E_{1n} = E_{2n} =0 \\\\ \implies E_{1t} = E_{2t} \end{gather} \]

for \(\vec J = \sigma \vec E\)

\[ \begin{gather} \frac{J_{1t}}{\sigma_1}= \frac{J_{2t}}{\sigma_2} \end{gather} \]