Skip to content

Electrostatics

Gauss's Law

Φ=QencΦ=SD  dS=vD dv=vρv dvD=ρv

Electric Field

Electric dipole

  • Dipole moment: p
p=QdV=Q4πεdcosθr2=par^4πεr2=pr4πεr3

note that ar^ is unit vector.

E=V=[Vrr^ +1rVθθ^ ]=p4πεr3(2cosθ r^ +sinθ θ^ )

Polarization

  • Polarization vector: P
Pχe ε0 E
  • surface bound charge density: ρps
    • the direction an^ is outgoing the volume which contain charge
ρps=Pan
  • volume bound charge density: ρpv
ρpv=P
  • Electric flux density field D
ρv=ρtotalρpvD=(ε0E)(P)D=ε0 E+P=ε0(1+χe)E=εr ε0 E=ε E

Electric Potential

VAB=ABE  dl=VBVA=ABdV=ABVdl

implies,

E=V
  • by Stokes' Theorem
LEdl=S(×E)dS=0×E=0

Electric Energy

  • WE : Energy stored in the capacitor

  • discrete charges

WE=12QkVk
  • continuous charges
WE=vρvV(r)dv=12v(D)V dv=12(v(DV) dvvD(V) dv)=12(SVD dS+vDE dv)

consider S=U (Universe), then

SVD dS0WE=12UDE dv

Conduction Current

  • Definition: Charge flows due to E

  • force on electron Fe

Fe=eE
  • friction Fr
Fr=ΔpΔt=muτ
Fe+Fr=0muτ=eE
  • mean free time τ
  • average drift velocity u
u=eτmE=μeE

Current Density

  • current view:
J=IS
  • convection current view:
J=ρvu=(ne)(eτm)E
  • Ohm's law view:
I=YVJ=σE
  • conductivity σ

Continuity Equation

Inet=ddtQ=ddtvρvdvInet=SJS=vJdvJ=ddtρv
note

collapse: true

Recall that the physical meaning of divergence,

A0(source)A<0(sink)

It is reasonable to write ρv for a charge source.

Also intuitive for steady current have

J=0

Relaxation Time

  • relaxation time τ
  • view from solving differential equation
J=ddtρv=(σE)=σεD=σερvσεdt=dρvρvρv=ρoexp(σεt)=ρoet/ττ=εσ
  • view from having τ=RC
τ=RC=VIQV=εEdSσEdS=εσ

Boundary Condition

for there is no surface charge density

(ρSan)=0D=0J=σEJ=0

implies

D1n=D2nJ1n=J2n
  • tangent direction

for the closed-loop in conservative field, we have

cEdl=0

then

E1=E2E1n=E2n=0E1t=E2t

for J=σE

J1tσ1=J2tσ2