Skip to content

Magnetostatics

Biot-Savart's Law

  • Sources
\[ \begin{gather} \vec udQ = \frac{d\vec ℓ}{dt}Q = Id\vec ℓ \end{gather} \]
  • Magnetic flux density:
\[ \begin{gather} d\vec B = \frac{\mu_o}{4\pi}\frac{Id\vec ℓ \times \hat{a_r}}{R^{2}} \end{gather} \]
  • Magnetic field density:
\[ \begin{gather} d\vec H = \frac{d\vec B}{\mu_o}= \frac{1}{4\pi}\frac{Id\vec ℓ \times \hat{a_r}}{R^{2}} \end{gather} \]
  • Magnetic force
\[ \begin{align} d\vec F &= Id\vec ℓ \times d\vec B \\\\ &= Id\vec ℓ \times \left(\frac{\mu_o}{4\pi}\frac{Id\vec ℓ \times \hat{a_r}}{R^{2}}\right) \end{align} \]

Comparison

\[ \begin{gather} d\vec F= q \vec E \end{gather} \]

Ampere's Law

  • original Ampere's law 👎
\[ \begin{gather} \oint_C{\vec H \cdot d\vec ℓ}=\int_S{\vec J\cdot d\vec S}=I_{enc} \\\\ \nabla \times \vec H=\vec J \end{gather} \]
  • Ampere-Maxwell equation 👍
\[ \begin{gather} \oint_C{\vec H \cdot d \vec ℓ} = \int_S{\left(\vec J_f+\frac{\partial \vec D}{\partial t}\right)\cdot d \vec S} \\\\ \nabla \times \vec H =\vec J_f + \frac{\partial \vec D}{\partial t} \end{gather} \]
displacement current

for the identity

\[ \begin{gather} \nabla \cdot (\nabla \times \vec H) =0 \\\\ \nabla \cdot (\nabla \times \vec H) = \nabla \cdot \vec J \neq 0 \quad\text{ when}\quad\nabla \cdot \vec J=-\frac{\partial \rho_v}{\partial t} \neq 0 \end{gather} \]

thus, let's write

\[ \begin{gather} \nabla \times \vec H = \vec J +\vec J_d \end{gather} \]

then

\[ \begin{gather} \nabla \cdot (\nabla \times \vec H) = \nabla \cdot \vec J + \nabla \cdot \vec J_d= 0 \\\\ \implies \nabla \cdot \vec J_d = \frac{\partial \rho_v}{\partial t} = \frac{\partial }{\partial t}\left(\nabla \cdot \vec D\right) \\\\ \implies\vec J_d= \frac{\partial \vec D}{\partial t} \end{gather} \]
  • displacement current \(I_d\) <br \(\vec J_d\) is called displacement current density, and the displacement current \(I_d\) id defined by <br
\[ \begin{gather} I_d = \int_S{\vec J_d \cdot d\vec S} \end{gather} \]

for \(I_d \neq 0\) whenever there is an accumulation of charges, or the imginary current inside capacitor. <br e.g. semi-infinite conductive wire.


Gauss' Law

\[ \begin{gather} \oint_S{\vec B \cdot d \vec S} = \int_V{\nabla \cdot \vec B}=0 \end{gather} \]

For it exists not isolated magnetic poles, Guass' law here in magnetism is pretty intuitive.


Faraday's law

  • static electric field \(E_e\)
  • transformer-induced electric field \(E_T\)
  • motion-induced electric field \(E_m\)
  • induced electric field \(E_{ind} \equiv E_T +E_m\)
\[ \begin{align} V_{emf}&=\oint_L (E_e+E_T+E_m) \\\\ &=0+\left(-\int_S{\frac{\partial \vec B}{\partial t}\cdot d\vec S}\right)+\oint_L{\left(\vec u \times \vec B\right)\cdot d\vec ℓ} \\\\ &=-\frac{d}{dt}\int{\vec B \cdot d\vec S} \end{align} \]
  • differential form
\[ \begin{gather} \nabla \times \vec E=-\frac{\partial \vec B}{\partial t}+\nabla \times \left(\vec u \times \vec B\right) \\\\ \iff \nabla \times \left(\vec E- \vec u \times \vec B\right)=-\frac{\partial \vec B}{\partial t} \end{gather} \]

Magnetic Potentials

Magnetic Scalar Potential

  • magnetic scalar potential \(V_m\) (in \(A\))

Ignoring displacement current \(\vec J_d\), if \(\vec J = 0\), then

\[ \begin{gather} \nabla \times \vec H = 0 \\\\ \vec H = - \nabla V_m \end{gather} \]

comparison

\[ \begin{gather} \frac{1}{\varepsilon}\vec D = - \nabla V \end{gather} \]

Magnetic Vector Potential

  • magnetic vector potential \(\vec A\) (Wb/m)

since

\[ \begin{gather} \nabla \cdot \vec B = 0 \end{gather} \]

and recall the identity

\[ \begin{gather} \nabla \cdot \nabla \times \vec A = 0 \end{gather} \]

then we can write

\[ \begin{gather} \vec B = \nabla \times \vec A \end{gather} \]

by Stokes' theorem

\[ \begin{gather} \psi = \int_S{\vec B \cdot d \vec S}=\int_S{(\nabla \times \vec A)\cdot d\vec S}=\oint_L{\vec A\cdot d \vec ℓ} \end{gather} \]

and just remember that

\[ \begin{gather} \vec A = \int_Q{\frac{\mu}{4\pi}\frac{\vec udq}{R}} \end{gather} \]
  • line current
\[ \begin{gather} \vec udq = I d\vec ℓ \end{gather} \]
  • surface current
\[ \begin{gather} \vec udq = \vec K dS \end{gather} \]
  • volume current
\[ \begin{gather} \vec udq = \vec J dv \end{gather} \]

Comparison

\[ \begin{gather} V=\int_Q{\frac{1}{4\pi \varepsilon}\frac{dq}{R}} \end{gather} \]

Time-Varying Potentials

Easy but tedious derivation
  1. \(\nabla \times \vec E\)
\[ \begin{gather} \nabla \times \vec E = -\frac{\partial \left(\nabla \times \vec A\right)}{\partial t}=-\nabla \times \frac{\partial \vec A}{\partial t} \\\\ \implies \nabla \times \left(\vec E + \frac{\partial \vec A }{\partial t}\right)=0 \iff \nabla \times \left(-\nabla V\right)=0 \\\\ \implies \vec E = -\frac{\partial \vec A}{\partial t}-\nabla V \end{gather} \]
  1. \(\nabla \cdot \vec D\)
\[ \begin{gather} \nabla \cdot \vec E= \frac{\rho_v}{\varepsilon} \\\\ \implies \nabla^{2}V +\frac{\partial }{\partial t}\left(\nabla \cdot \vec A\right) =-\frac{\rho_v}{\varepsilon} \end{gather} \]
  1. \(\nabla \times \vec H\)
\[ \begin{gather} \nabla \times \vec H= \vec J + \varepsilon\frac{\partial \vec E}{\partial t} \\\\ \nabla \times \left(\frac{\nabla \times A}{\mu}\right)= \vec J + \varepsilon\frac{\partial \vec E}{\partial t} \\\\ \nabla^{2}\vec A=\nabla \left(\nabla \cdot \vec A\right)-\nabla \times \nabla \times \vec A \\\\ \nabla^{2}\vec A = \nabla \left(\nabla \cdot \vec A\right)-\mu \vec J - \mu\varepsilon \frac{\partial \vec E}{\partial t} \\\\ \nabla^{2}\vec A - \nabla \left(\nabla \cdot \vec A\right)=-\mu \vec J + \mu\varepsilon\nabla \left(\frac{\partial V}{\partial t}\right) +\mu\varepsilon \frac{\partial ^{2}\vec A}{\partial t^{2}} \end{gather} \]
  1. coupled equations for \(V\) and \(\vec A\), (normally given \(\rho_v\) and \(\vec J\))
\[ \left\{ \begin{align} &\nabla^{2}V +\frac{\partial }{\partial t}\left(\nabla \cdot \vec A\right) =-\frac{\rho_v}{\varepsilon} \\\\ &\nabla^{2}\vec A - \nabla \left(\nabla \cdot \vec A\right)=-\mu \vec J + \mu\varepsilon\nabla \left(\frac{\partial V}{\partial t}\right) +\mu\varepsilon \frac{\partial ^{2}\vec A}{\partial t^{2}} \end{align}\right. \]
  1. decoupling: Lorenz condition
    eliminate \(\mu\varepsilon\nabla (\frac{\partial }{\partial t}V)\) term, by let
\[ \begin{gather} \nabla \cdot \vec A=-\mu\varepsilon \frac{\partial V}{\partial t} \end{gather} \]
  1. Coulomb condition
    let
\[ \begin{gather} \nabla \cdot \vec A = 0 \end{gather} \]

Magnetic Moment

  • magnetic dipole
\[ \begin{gather} \vec m = I_b\, \vec S \end{gather} \]
  • magnetization vector
\[ \begin{gather} \vec M = \lim_{\Delta v \to 0}{\frac{\sum \vec m_k}{\Delta v}} \\\\ \implies d\vec m = \vec M dv \end{gather} \]

Magnetization Current

  • bound volume current density
\[ \begin{gather} \vec J_b = \nabla \times \vec M \end{gather} \]

Comparison

  • In a space \(\vec M = 0\) (with free current only)
\[ \begin{gather} \nabla \times \vec H = \vec J_f \end{gather} \]
  • bound surface current density
\[ \begin{gather} \vec K_b = \vec M \times \hat{a_n} \end{gather} \]

the equation can be intuitively come up with by

Permeability

In material \(\vec M \neq 0\)

\[ \begin{gather} \nabla \times \frac{\vec B}{\mu_0} &= &\vec J_f &+ \vec J_b &= \vec J \\\\ &=&\nabla \times \vec H &+ \nabla \times \vec M & \end{gather} \]
\[ \begin{gather} \\ \implies \vec B = \mu_0(\vec H + \vec M) \end{gather} \]

For linear Model

\[ \begin{gather} \vec M = \chi_m\vec H \end{gather} \]
\[ \begin{align} \\ \implies \vec B &= \mu_0(1+\chi_m)\vec H \\\\ &= \mu_0\mu_r\,\vec H \\\\ &= \mu\vec H \end{align} \]

Comparison

\[ \begin{gather} \vec D = \varepsilon_0 \vec E + \vec P \end{gather} \]

Boundary Condition

by Guass' law

\[ \begin{gather} \nabla \cdot \vec B = 0 \\\\ \implies \vec B_{1n}= \vec B_{2n} \end{gather} \]

by Amp.'s law

\[ \begin{gather} \vec H_{1t\bot S} - \vec H_{2t\bot S}=\vec K \end{gather} \]

Inductance

  • Definition in electric circuit
\[ \begin{gather} v=L\frac{di}{dt} \end{gather} \]

Magnetic Flux Linkage

  • magnetic flux linkage \(\lambda\)
\[ \begin{gather} d\lambda = Nd \psi = \frac{I_{int}}{I_{ext}}d\psi \end{gather} \]

Self Inductance

\[ \begin{gather} L= \frac{\lambda }{I}=\frac{\displaystyle {N\int_S \vec B \cdot d \vec S}}{I} \end{gather} \]

Mutual Inductance

\[ \begin{gather} M_{12}=\frac{\lambda_{12}}{I_2}=\frac{\displaystyle{N_1\int_{S_1}{\vec B_2\cdot d\vec S}}}{I_2} \\\\ M_{21}=\frac{\lambda_{21}}{I_1}=\frac{\displaystyle{N_2\int_{S_2}{\vec B_1\cdot d\vec S}}}{I_1} \\\\ M_{12} = M_{21} = M \end{gather} \]


Magnetic Energy

  • Magnetic energy in circuit theory
\[ \begin{align} W_m &= \int{Pdt}=\int{VI\,dt} \\\\ &= \int_0^{t}{L\frac{dI}{dt}I\,dt} \\\\ &= \int_0^{I}{LI\,dI}=\frac{1}{2}LI^{2} \end{align} \]

Comparison

\[ \begin{gather} W_e=\frac{1}{2}CV^{2} \end{gather} \]
  • magnetostatic energy density (in general)
\[ \begin{gather} w_m=\frac{dW_m}{dv}=\frac{1}{2}\vec B \cdot \vec H \end{gather} \]

Magnetic Circuits

Electric Magnetic
\(I\) \(\psi\)
emf \(V\) mmf \(ℱ\)
resistance \(R\) reluctance \(ℛ\)
  • magnetomotive force (mmf)
\[ \begin{gather} ℱ=\oint{\vec H \cdot d\vec ℓ}=NI \end{gather} \]
  • Ohm's law
\[ \begin{gather} ℛ=\frac{ℱ}{\psi}=\frac{Hℓ}{BS}=\frac{ℓ}{\mu S} \end{gather} \]