Skip to content

Magnetostatics

Biot-Savart's Law

  • Sources
udQ=ddtQ=Id
  • Magnetic flux density:
dB=μo4πId×ar^R2
  • Magnetic field density:
dH=dBμo=14πId×ar^R2
  • Magnetic force
dF=Id×dB=Id×(μo4πId×ar^R2)

Comparison

dF=qE

Ampere's Law

  • original Ampere's law 👎
CHd=SJdS=Ienc×H=J
  • Ampere-Maxwell equation 👍
CHd=S(Jf+Dt)dS×H=Jf+Dt
displacement current

for the identity

(×H)=0(×H)=J0 whenJ=ρvt0

thus, let's write

×H=J+Jd

then

(×H)=J+Jd=0Jd=ρvt=t(D)Jd=Dt
  • displacement current Id <br Jd is called displacement current density, and the displacement current Id id defined by <br
Id=SJddS

for Id0 whenever there is an accumulation of charges, or the imginary current inside capacitor. <br e.g. semi-infinite conductive wire.


Gauss' Law

SBdS=VB=0

For it exists not isolated magnetic poles, Guass' law here in magnetism is pretty intuitive.


Faraday's law

  • static electric field Ee
  • transformer-induced electric field ET
  • motion-induced electric field Em
  • induced electric field EindET+Em
Vemf=L(Ee+ET+Em)=0+(SBtdS)+L(u×B)d=ddtBdS
  • differential form
×E=Bt+×(u×B)×(Eu×B)=Bt

Magnetic Potentials

Magnetic Scalar Potential

  • magnetic scalar potential Vm (in A)

Ignoring displacement current Jd, if J=0, then

×H=0H=Vm

comparison

1εD=V

Magnetic Vector Potential

  • magnetic vector potential A (Wb/m)

since

B=0

and recall the identity

×A=0

then we can write

B=×A

by Stokes' theorem

ψ=SBdS=S(×A)dS=LAd

and just remember that

A=Qμ4πudqR
  • line current
udq=Id
  • surface current
udq=KdS
  • volume current
udq=Jdv

Comparison

V=Q14πεdqR

Time-Varying Potentials

Easy but tedious derivation
  1. ×E
×E=(×A)t=×At×(E+At)=0×(V)=0E=AtV
  1. D
E=ρvε2V+t(A)=ρvε
  1. ×H
×H=J+εEt×(×Aμ)=J+εEt2A=(A)××A2A=(A)μJμεEt2A(A)=μJ+με(Vt)+με2At2
  1. coupled equations for V and A, (normally given ρv and J)
{2V+t(A)=ρvε2A(A)=μJ+με(Vt)+με2At2
  1. decoupling: Lorenz condition
    eliminate με(tV) term, by let
A=μεVt
  1. Coulomb condition
    let
A=0

Magnetic Moment

  • magnetic dipole
m=IbS
  • magnetization vector
M=limΔv0mkΔvdm=Mdv

Magnetization Current

  • bound volume current density
Jb=×M

Comparison

  • In a space M=0 (with free current only)
×H=Jf
  • bound surface current density
Kb=M×an^

the equation can be intuitively come up with by

Permeability

In material M0

×Bμ0=Jf+Jb=J=×H+×M
B=μ0(H+M)

For linear Model

M=χmH
B=μ0(1+χm)H=μ0μrH=μH

Comparison

D=ε0E+P

Boundary Condition

by Guass' law

B=0B1n=B2n

by Amp.'s law

H1tSH2tS=K

Inductance

  • Definition in electric circuit
v=Ldidt

Magnetic Flux Linkage

  • magnetic flux linkage λ
dλ=Ndψ=IintIextdψ

Self Inductance

L=λI=NSBdSI

Mutual Inductance

M12=λ12I2=N1S1B2dSI2M21=λ21I1=N2S2B1dSI1M12=M21=M


Magnetic Energy

  • Magnetic energy in circuit theory
Wm=Pdt=VIdt=0tLdIdtIdt=0ILIdI=12LI2

Comparison

We=12CV2
  • magnetostatic energy density (in general)
wm=dWmdv=12BH

Magnetic Circuits

Electric Magnetic
I ψ
emf V mmf
resistance R reluctance
  • magnetomotive force (mmf)
=Hd=NI
  • Ohm's law
=ψ=HBS=μS