Skip to content

Transmission Line

Transmission-Line Equations

First define - \(ℭ\) : inductance per unit length - \(𝔏\) : inductance per unit length

Lossless Transmission Lines

\[ \left\{ \begin{align} \frac{\partial V}{\partial z}&=-𝔏\frac{\partial I}{\partial t} \\\\ \frac{\partial I}{\partial z}&= -ℭ\frac{\partial V}{\partial t} \end{align}\right. \]

tip

These equation can be easily derived from the definition of capacitance and capacitance in electric circuit theorem

\[ \begin{gather} v = L\frac{di}{dt} \\\\ i= C\frac{dv}{dt} \end{gather} \]

Similar to the derivation in EM wave equation, we can obtain the wave equation form

\[ \left\{ \begin{align} \frac{\partial^{2} V}{\partial z^{2}} &= 𝔏ℭ\frac{\partial^{2} V}{\partial t^{2}} \\\\ \frac{\partial^{2}I}{\partial z^{2}} &= 𝔏ℭ\frac{\partial^{2} I}{\partial t^{2}} \end{align}\right. \]

Thus we have the wave velocity

\[ \begin{gather} u = \frac{1}{\sqrt{𝔏ℭ}} \end{gather} \]

Comparing to the velocity of EM wave, it tell us the important relation that

\[ \begin{gather} \boxed{ 𝔏ℭ = \mu\varepsilon } \end{gather} \]

Furthermore, considering the phasor form of transmission-line equation, we have

\[ \begin{align} \frac{d^{2}V_s}{dz^{2}} = (j\beta)^{2}\,V_s \\\\ \frac{d^{2}I_s}{dz^{2}} = (j\beta)^{2}\,I_s \end{align} \]

in which

\[ \begin{gather} (j\beta)^{2} = (j\omega)^{2}𝔏ℭ \\\\ \implies \boxed{ \beta = \omega\sqrt{𝔏ℭ} = \frac{\omega}{u} } \end{gather} \]

General Solutions

\[ \begin{align} V(z, t) &= V^{+}(z-ut)+V^{-}(z+ut) \\\\ I(z, t) &= I^{+}(z-ut)+I^{-}(z+ut) \end{align} \]

Similarly, we have the characteristic impedance \(Z_0\)

\[ \begin{gather} Z_0 = \sqrt\frac{𝔏}{ℭ}=\frac{V^{+}}{I^{+}}=-\frac{V^{-}}{I^{-}} \end{gather} \]

General Transmission LInes

Revise the transmission-line equation in the lossless case into

\[ \left\{ \begin{align} -\frac{\partial V}{\partial z}&=RI+L\frac{\partial I}{\partial t} \\\\ -\frac{\partial I}{\partial z}&= GV+C\frac{\partial V}{\partial t} \end{align}\right. \qquad\overset{𝔉ourier}{\iff}\qquad \left\{ \begin{aligned} \frac{d V_s}{d z}&=-(R+ j\omega L)I_s \\\\ \frac{d \,I_s}{d z}&= -(G+j\omega C)V_s \end{aligned}\right. \]

Also, in the form of wave equations

\[ \begin{gather} \frac{d^{2}V_s}{dz^{2}} = \gamma^{2}V_s \\\\ \frac{d^{2}I_s}{dz^{2}} = \gamma^{2}I_s \end{gather} \]

in which \(\gamma\) is also called as propagation constant.

\[ \begin{gather} \gamma = \sqrt{(R+j\omega L)(G+j\omega C)} = \alpha+j\beta \end{gather} \]

General Solutions

solve the wave equations above

\[ \begin{align} V_s &= V_0^{+}e^{-\gamma z}+V_0^{-}e^{\gamma z} \\\\ I_s &= I_0^{+}e^{-\gamma z}+I_0^{-}e^{\gamma z} \\\\ &= \frac{V_0^{+}}{Z_0}e^{-\gamma z}-\frac{V_0^{+}}{Z_0}e^{\gamma z} \end{align} \]

and the corresponding time domain form

\[ \begin{align} V(z, t) &= |V_0^{+}|e^{-\alpha z}\cos(\omega t- \beta z + \phi^{+}) + |V_0^{-}|e^{\alpha z}\cos(\omega t+ \beta z + \phi^{-}) \\\\ I(z, t) &= |I_0^{+}|e^{-\alpha z}\cos(\omega t- \beta z + \varphi^{+}) + |I_0^{-}|e^{\alpha z}\cos(\omega t+ \beta z + \varphi^{-}) \end{align} \]
  • power attenuation
\[ \begin{align} \text{attenuation const} &= \alpha \quad\text{(NP/m)} \\\\ \text{power attenuation} &= 20 \log{e^{\alpha}}\quad\text{(dB/m)} \end{align} \]

thus,

\[ \begin{gather} 1\,\text{NP} = 20\log{e^{1}} = 8.69 \, \text{dB} \end{gather} \]

Power

  • time-average power
\[ \begin{align} P(z) &= \frac{1}{2}\text{Re}\bigg[VI^{*}\bigg] \\\\ &= \frac{1}{2}\text{Re}\bigg[V_0^{+}(1+\Gamma)\left(\frac{V_0^{+}}{Z_0}\right)^{*}(1-\Gamma^{*})\bigg] \\\\ &= \frac{1}{2}\text{Re}\bigg[\frac{{V_0^{+}}^{2}}{Z_0}(1+\Gamma)(1-\Gamma^{*})\bigg] \\\\ &=\frac{1}{2}\frac{\left|V_0^{+}\right|^{2}}{Z_0}(1-|\Gamma|^{2}) \tag 6 \end{align} \]

^equ-6


\[ \implies \begin{dcases} P^{+}=\frac{1}{2}\left|V_0^{+}\right||I_0^{+}|\,e^{+ 2\alpha z} \\\\ P^{-}=\frac{1}{2}\left|V_0^{-}\right||I_0^{-}|\,e^{- 2\alpha z} \end{dcases} \]
  • power loss
\[ \begin{gather} \text{PL} =P(0)-P(z) \end{gather} \]

Distortionless

  • conditions
\[ \begin{gather} \frac{R}{L} = \frac{G}{C} \end{gather} \]

thus, we have the propagation constant \(\gamma\)

\[ \begin{align} \gamma &= \sqrt{(R+j\omega L)(G+ j\omega C)} \\\\ &= \sqrt{LC} \sqrt{\left(\frac{R}{L} +j\omega\right)\left(\frac{G}{C} +j\omega\right)} \\\\ &= \sqrt{LC} \left(\frac{R}{L} +j\omega\right) \\\\ &= \sqrt{RG} + j\omega\sqrt{LC} \end{align} \]

and the characteristic impedance \(Z_0\)

\[ \begin{align} Z_0 &= \sqrt{\frac{R+j\omega L}{G+ j\omega C}} \\\\ &= \sqrt {\frac{R(1+j\omega\frac{L}{R})}{G(1+j\omega(\frac{C}{G}))}} \\\\ &= \sqrt{\frac{R}{G}} = \sqrt{\frac{L}{C}} \end{align} \]

Standing Wave Ratio

  • aka \(\text{SWR}\)

Reflection

  • voltage reflection coefficient
\[ \begin{gather} \Gamma(z) = \frac{V^{-}(z)}{V^{+}(z)} =\frac{V_0^{-}e^{+\gamma z}}{V_0^{+}e^{-\gamma z}} =\frac{V_0^{-}}{V_0^{+}}e^{+2\gamma z} \end{gather} \]
  • current reflection coefficient
\[ \begin{gather} \Gamma_I(z)=\frac{I^{-}}{I^{+}}=-\frac{V^{-}}{V^{+}}=-\Gamma(z) \end{gather} \]
  • \(\Gamma_L\)
    Let's define the impedance from load \(Z_L=V_L/I_L\)
\[ \begin{gather} V_0^{+}e^{-\gamma ℓ}+V_0^{-}e^{+\gammaℓ}=\frac{Z_L}{Z_0}(V_0^{+}e^{-\gammaℓ}-V_0^{-}e^{+\gamma ℓ}) \\\\ \implies (Z_0-Z_L)V_0^{+}e^{-\gamma ℓ}=-(Z_L+Z_0)V_0^{-}e^{+\gamma ℓ} \\\\ \implies \boxed{ \Gamma_L=\frac{V_0^{-}e^{+\gamma ℓ }}{V_0^{+}e^{-\gamma ℓ}}=\frac{V_0^{-}}{V_0^{+}}e^{+2\gamma ℓ }=\frac{Z_L-Z_0}{Z_L+Z_0} } \tag{2} \end{gather} \]

^equ-2

We can further write the reflection coefficient from load at \(d\) as

\[ \begin{align} \Gamma(d)= \Gamma_{L}\,e^{-2\gamma d} \tag 3 \end{align} \]

^equ-3

tips

from \(\text{equation (3-1)}\),

\[ \begin{gather} Z(z) = Z_0\frac{1+\Gamma}{1-\Gamma} \\\\ \implies Z(z) - Z(z)\,\Gamma = Z_0+Z_0\,\Gamma \\\\ \implies \boxed{ \Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0} } \end{gather} \]

we can also derive \(\text{equation (2)}\) by virtue of this equation

\[ \begin{gather} \Gamma_L = \Gamma(z=ℓ) = \Gamma(d=0) = \frac{Z(z=ℓ)-Z_0}{Z(z=ℓ)+Z_0} \end{gather} \]

Furthermore, at the generator-end (i.e. \(z=0\)), we have

\[ \begin{gather} \Gamma(z=0)=\Gamma(d=ℓ)=\frac{Z_{in}-Z_0}{Z_{in} + Z_0} \end{gather} \]

impedance

  • Line impedance at \(z\), \(Z(z)\)
\[ \begin{align} Z(z) &= \frac{V_s}{I_s} \\\\ &= Z_0\frac{V_0^{+}e^{-\gamma z}+V_0^{-}e^{+\gamma z}}{V_0^{+}e^{-\gamma z}-V_0^{-}e^{+\gamma z}} = Z_0\frac{1+\displaystyle \frac{V_0^{-}}{V_0^{+}}e^{+2\gamma z}}{1-\displaystyle \frac{V_0^{-}}{V_0^{+}}e^{+2\gamma z}} \\\\ &= Z_0\frac{1+\Gamma(z)}{1-\Gamma(z)} \tag{3-1} \end{align} \]

^equ-3-1

  • impedance at load \(Z_L\)
\[ \begin{align} Z_L &= Z(z=ℓ) = Z_0\frac{1+\Gamma(z=ℓ)}{1-\Gamma(z=ℓ)} \\\\ &= Z_0\frac{1+\Gamma_L}{1-\Gamma_L} \end{align} \]
  • input impedance \(Z_{in}\)
\[ \begin{align} Z_{in} &= Z(z=0) = Z_0\frac{1+\Gamma(z=0)}{1-\Gamma(z=0)} \\\\ &= Z_0\,\frac{1+ \displaystyle \frac{V_0^{-}}{V_0^{+}}}{1- \displaystyle \frac{V_0^{-}}{V_0^{+}}} \\\\ &= Z_0\,\frac{1+ \Gamma_L\,e^{-2\gamma ℓ}}{1- \Gamma_L\,e^{-2\gamma ℓ}} \end{align} \]

from \(\text{equation (2)}\) we have

\[ \begin{align} Z_{in} &= Z_0\,\frac{1+ \Gamma_L\,e^{-2\gamma ℓ}}{1- \Gamma_L\,e^{-2\gamma ℓ}} \\\\ &= Z_0\,\frac{1+ \displaystyle \frac{Z_L-Z_0}{Z_L+Z_0}\,e^{-2\gamma ℓ}}{1- \displaystyle \frac{Z_L-Z_0}{Z_L+Z_0}\,e^{-2\gamma ℓ}} \\\\ &= Z_0\,\frac{Z_L+Z_0+ (Z_L-Z_0)\,e^{-2\gamma ℓ}}{Z_L+Z_0- (Z_L-Z_0)\,e^{-2\gamma ℓ}} \\\\ &= Z_0\,\frac{Z_L(1+e^{-2\gamma ℓ})+Z_0(1-e^{-2\gamma ℓ})}{Z_L(1-e^{-2\gamma ℓ})+Z_0(1+e^{-2\gamma ℓ})} \\\\ &= Z_0\,\frac{Z_L+Z_0\,\tanh{\gammaℓ}}{Z_L\,\tanh{\gammaℓ}+Z_0} \\\\ &= \boxed{ Z_0\,\frac{Z_L+Z_0\,\tanh{\gammaℓ}}{Z_0+Z_L\,\tanh{\gammaℓ}} } \\\\ &\xlongequal{\alpha = 0} Z_0\,\frac{Z_L+jZ_0\,\tan{\betaℓ}}{Z_0+jZ_L\,\tan{\betaℓ}} \end{align} \]

Complex form

As usual, we can represent \(\Gamma\) with complex coordinate.

\[ \begin{gather} \Gamma = |\Gamma |\,\angle{\Gamma} \end{gather} \]

Consider \(\text{equation (3)}\), we further have

\[ \begin{align} \boxed{ \Gamma=\Gamma_L\,e^{-2\alpha d}\,e^{-j2\beta d} } \end{align} \]

Besides, we can rewrite \(V_s, I_s\) as

\[ \begin{align} |V_s| &= \left|V^{+}\right||1+\Gamma| \\\\ |I_s| &= \left|I^{+}\right||1-\Gamma| \end{align} \]

Standing Wave Ratio for Lossless

\[ \begin{align} \text{VSWR} &\equiv \frac{V_{max}}{V_{min}} = \frac{|V_0^{+}||1+\Gamma|_{max}}{|V_0^{+}||1+\Gamma|_{min}} \\\\ &= \frac{1+ |\Gamma|}{1- |\Gamma|} \xlongequal{\alpha\,=\,0}\frac{1+ |\Gamma_L|}{1- |\Gamma_L|} \end{align} \]

and similarly for \(\text{ISWR}\),

\[ \begin{gather} \frac{I_{max}}{I_{min}}=\frac{V_{max}}{V_{min}}=\text{SWR} \end{gather} \]

according to \(\text{equation (5)}\),

\[ \begin{align} z=\frac{1+\Gamma}{1-\Gamma}=r+jx \end{align} \]

we can obtain \(\text{SWR}\) by picking the point that \(\angle\Gamma = 0\), then

\[ \begin{align} \text{SWR} = \frac{1+|\Gamma|}{1-|\Gamma|}= r+j0=r \end{align} \]

Smith Chart

Smith chart help us quickly obtain the normalized impedance \(Z\) w.r.t \(Z_0\).

\[ \begin{align} Z= z\times Z_0 = (r+jx)\times Z_0 \end{align} \]

then, we can have the normalized impedance \(z\)

\[ \begin{align} z=r+jx= \frac{Z}{Z_0}=\frac{1+\Gamma}{1-\Gamma} \tag 5 \end{align} \]

^equ-5

  • \(r\)-circles

  • \(x\)-circles

Admittance Chart

for the admittance of transmission line, we can easily obtain the relationship of admittance and impedance.

\[ \begin{gather} y=\frac{Y}{Y_0}=\frac{1}{z}=\frac{1-\Gamma}{1+\Gamma} \\\\ \implies y=z\,e^{-j\pi} \tag 4 \end{gather} \]

^equ-4

the \(\text{equation (4)}\) tell us that we can obtain the normalized admittance \(y\) with Smith chart by simply rotate the corresponding \(z\) with \(180\degree\).