Skip to content

Transmission LineΒΆ

Transmission-Line EquationsΒΆ

First define - β„­ : inductance per unit length - 𝔏 : inductance per unit length

Lossless Transmission LinesΒΆ

{βˆ‚Vβˆ‚z=βˆ’π”βˆ‚Iβˆ‚tβˆ‚Iβˆ‚z=βˆ’β„­βˆ‚Vβˆ‚t

tip

These equation can be easily derived from the definition of capacitance and capacitance in electric circuit theorem

v=Ldidti=Cdvdt

Similar to the derivation in EM wave equation, we can obtain the wave equation form

{βˆ‚2Vβˆ‚z2=π”β„­βˆ‚2Vβˆ‚t2βˆ‚2Iβˆ‚z2=π”β„­βˆ‚2Iβˆ‚t2

Thus we have the wave velocity

u=1𝔏ℭ

Comparing to the velocity of EM wave, it tell us the important relation that

𝔏ℭ=ΞΌΞ΅

Furthermore, considering the phasor form of transmission-line equation, we have

d2Vsdz2=(jΞ²)2Vsd2Isdz2=(jΞ²)2Is

in which

(jΞ²)2=(jΟ‰)2π”β„­βŸΉΞ²=ω𝔏ℭ=Ο‰u

General SolutionsΒΆ

V(z,t)=V+(zβˆ’ut)+Vβˆ’(z+ut)I(z,t)=I+(zβˆ’ut)+Iβˆ’(z+ut)

Similarly, we have the characteristic impedance Z0

Z0=𝔏ℭ=V+I+=βˆ’Vβˆ’Iβˆ’

General Transmission LInesΒΆ

Revise the transmission-line equation in the lossless case into

{βˆ’βˆ‚Vβˆ‚z=RI+Lβˆ‚Iβˆ‚tβˆ’βˆ‚Iβˆ‚z=GV+Cβˆ‚Vβˆ‚tβŸΊπ”‰ourier{dVsdz=βˆ’(R+jΟ‰L)IsdIsdz=βˆ’(G+jΟ‰C)Vs

Also, in the form of wave equations

d2Vsdz2=Ξ³2Vsd2Isdz2=Ξ³2Is

in which Ξ³ is also called as propagation constant.

γ=(R+jωL)(G+jωC)=α+jβ

General SolutionsΒΆ

solve the wave equations above

Vs=V0+eβˆ’Ξ³z+V0βˆ’eΞ³zIs=I0+eβˆ’Ξ³z+I0βˆ’eΞ³z=V0+Z0eβˆ’Ξ³zβˆ’V0+Z0eΞ³z

and the corresponding time domain form

V(z,t)=|V0+|eβˆ’Ξ±zcos⁑(Ο‰tβˆ’Ξ²z+Ο•+)+|V0βˆ’|eΞ±zcos⁑(Ο‰t+Ξ²z+Ο•βˆ’)I(z,t)=|I0+|eβˆ’Ξ±zcos⁑(Ο‰tβˆ’Ξ²z+Ο†+)+|I0βˆ’|eΞ±zcos⁑(Ο‰t+Ξ²z+Ο†βˆ’)
  • power attenuation
attenuation const=α(NP/m)power attenuation=20log⁑eα(dB/m)

thus,

1NP=20log⁑e1=8.69dB

PowerΒΆ

  • time-average power
P(z)=12Re[VIβˆ—]=12Re[V0+(1+Ξ“)(V0+Z0)βˆ—(1βˆ’Ξ“βˆ—)]=12Re[V0+2Z0(1+Ξ“)(1βˆ’Ξ“βˆ—)](6)=12|V0+|2Z0(1βˆ’|Ξ“|2)

^equ-6


⟹{P+=12|V0+||I0+|e+2Ξ±zPβˆ’=12|V0βˆ’||I0βˆ’|eβˆ’2Ξ±z
  • power loss
PL=P(0)βˆ’P(z)

DistortionlessΒΆ

  • conditions
RL=GC

thus, we have the propagation constant Ξ³

γ=(R+jωL)(G+jωC)=LC(RL+jω)(GC+jω)=LC(RL+jω)=RG+jωLC

and the characteristic impedance Z0

Z0=R+jωLG+jωC=R(1+jωLR)G(1+jω(CG))=RG=LC

Standing Wave RatioΒΆ

  • aka SWR

ReflectionΒΆ

  • voltage reflection coefficient
Ξ“(z)=Vβˆ’(z)V+(z)=V0βˆ’e+Ξ³zV0+eβˆ’Ξ³z=V0βˆ’V0+e+2Ξ³z
  • current reflection coefficient
Ξ“I(z)=Iβˆ’I+=βˆ’Vβˆ’V+=βˆ’Ξ“(z)
  • Ξ“L
    Let's define the impedance from load ZL=VL/IL
V0+eβˆ’Ξ³β„“+V0βˆ’e+Ξ³β„“=ZLZ0(V0+eβˆ’Ξ³β„“βˆ’V0βˆ’e+Ξ³β„“)⟹(Z0βˆ’ZL)V0+eβˆ’Ξ³β„“=βˆ’(ZL+Z0)V0βˆ’e+Ξ³β„“(2)βŸΉΞ“L=V0βˆ’e+Ξ³β„“V0+eβˆ’Ξ³β„“=V0βˆ’V0+e+2Ξ³β„“=ZLβˆ’Z0ZL+Z0

^equ-2

We can further write the reflection coefficient from load at d as

(3)Ξ“(d)=Ξ“Leβˆ’2Ξ³d

^equ-3

tips

from equation (3-1),

Z(z)=Z01+Ξ“1βˆ’Ξ“βŸΉZ(z)βˆ’Z(z)Ξ“=Z0+Z0Ξ“βŸΉΞ“(z)=Z(z)βˆ’Z0Z(z)+Z0

we can also derive equation (2) by virtue of this equation

Ξ“L=Ξ“(z=β„“)=Ξ“(d=0)=Z(z=β„“)βˆ’Z0Z(z=β„“)+Z0

Furthermore, at the generator-end (i.e. z=0), we have

Ξ“(z=0)=Ξ“(d=β„“)=Zinβˆ’Z0Zin+Z0

impedanceΒΆ

  • Line impedance at z, Z(z)
Z(z)=VsIs=Z0V0+eβˆ’Ξ³z+V0βˆ’e+Ξ³zV0+eβˆ’Ξ³zβˆ’V0βˆ’e+Ξ³z=Z01+V0βˆ’V0+e+2Ξ³z1βˆ’V0βˆ’V0+e+2Ξ³z(3-1)=Z01+Ξ“(z)1βˆ’Ξ“(z)

^equ-3-1

  • impedance at load ZL
ZL=Z(z=β„“)=Z01+Ξ“(z=β„“)1βˆ’Ξ“(z=β„“)=Z01+Ξ“L1βˆ’Ξ“L
  • input impedance Zin
Zin=Z(z=0)=Z01+Ξ“(z=0)1βˆ’Ξ“(z=0)=Z01+V0βˆ’V0+1βˆ’V0βˆ’V0+=Z01+Ξ“Leβˆ’2Ξ³β„“1βˆ’Ξ“Leβˆ’2Ξ³β„“

from equation (2) we have

Zin=Z01+Ξ“Leβˆ’2Ξ³β„“1βˆ’Ξ“Leβˆ’2Ξ³β„“=Z01+ZLβˆ’Z0ZL+Z0eβˆ’2Ξ³β„“1βˆ’ZLβˆ’Z0ZL+Z0eβˆ’2Ξ³β„“=Z0ZL+Z0+(ZLβˆ’Z0)eβˆ’2Ξ³β„“ZL+Z0βˆ’(ZLβˆ’Z0)eβˆ’2Ξ³β„“=Z0ZL(1+eβˆ’2Ξ³β„“)+Z0(1βˆ’eβˆ’2Ξ³β„“)ZL(1βˆ’eβˆ’2Ξ³β„“)+Z0(1+eβˆ’2Ξ³β„“)=Z0ZL+Z0tanh⁑γℓZLtanh⁑γℓ+Z0=Z0ZL+Z0tanh⁑γℓZ0+ZLtanh⁑γℓ=Ξ±=0Z0ZL+jZ0tan⁑βℓZ0+jZLtan⁑βℓ

Complex formΒΆ

As usual, we can represent Ξ“ with complex coordinate.

Ξ“=|Ξ“|βˆ Ξ“

Consider equation (3), we further have

Ξ“=Ξ“Leβˆ’2Ξ±deβˆ’j2Ξ²d

Besides, we can rewrite Vs,Is as

|Vs|=|V+||1+Ξ“||Is|=|I+||1βˆ’Ξ“|

Standing Wave Ratio for LosslessΒΆ

VSWR≑VmaxVmin=|V0+||1+Ξ“|max|V0+||1+Ξ“|min=1+|Ξ“|1βˆ’|Ξ“|=Ξ±=01+|Ξ“L|1βˆ’|Ξ“L|

and similarly for ISWR,

ImaxImin=VmaxVmin=SWR

according to equation (5),

z=1+Ξ“1βˆ’Ξ“=r+jx

we can obtain SWR by picking the point that βˆ Ξ“=0, then

SWR=1+|Ξ“|1βˆ’|Ξ“|=r+j0=r

Smith ChartΒΆ

Smith chart help us quickly obtain the normalized impedance Z w.r.t Z0.

Z=zΓ—Z0=(r+jx)Γ—Z0

then, we can have the normalized impedance z

(5)z=r+jx=ZZ0=1+Ξ“1βˆ’Ξ“

^equ-5

  • r-circles

  • x-circles

Admittance ChartΒΆ

for the admittance of transmission line, we can easily obtain the relationship of admittance and impedance.

y=YY0=1z=1βˆ’Ξ“1+Ξ“(4)⟹y=zeβˆ’jΟ€

^equ-4

the equation (4) tell us that we can obtain the normalized admittance y with Smith chart by simply rotate the corresponding z with 180\degree.