Skip to content

Wave Guide

Parallel Plate Waveguide

TE Waves

E=E0sin(kxx)sin(ωtkzz)ay^H=E0ηsinθsin(kxx)sin(ωtkzz)ax^+E0ηcosθsin(kxx)sin(ωtkzz)az^
  • cutoff wavelength
a=mλx2=mλcosθ2λ=2amcosθλc=[λ]cosθ=1=2amcosθ=λλc
  • guide wavelength (in z direction)
λg=2πkz=2πksinθ=λsinθsinθ=λλg

by the λc and λg we can also write the equations as

E=E0sin(kxx)sin(ωtkzz)ay^H=E0ηλλgsin(kxx)sin(ωtkzz)ax^+E0ηλλcsin(kxx)sin(ωtkzz)az^

TM Waves

H=H0cos(kxx)sin(ωtkzz)ay^
E=ηH0sinθsin(kxx)sin(ωtkzz)ax^+ηH0cosθsin(kxx)sin(ωtkzz)az^=ηH0λλgsin(kxx)sin(ωtkzz)ax^+ηH0λλcsin(kxx)sin(ωtkzz)az^

Rectangular Waveguide

  • γ
k2=kx2+ky2+kz2=kx2+ky2+(jγ)2γ2=kt2k2

TM mode

tip

notice that we assuming perfect conductors.

thus,

En=0Ezs=0,at boundary
Ezs=E0sin(mπxa)sin(nπyb)eγz

TE mode

Hzs=H0cos(mπxa)cos(nπyb)eγz

Resonators

  • TM
Ezs=E02sin(mπxa)sin(nπyb)(ejkzz+ejkzz)=E0sin(mπxa)sin(nπyb)cos(pπzd)
  • TE
Hzs=H0cos(mπxa)cos(nπyb)sin(pπzd)

Q Factors

Q=2πWPLT=ωWPL

recall

Q=XR=ωLR=ωI2LI2R=ωWP

Dominant Mode

  • the mode with lowest fc (i.e. largest λc).

Cylindrical

  • βc
k2=βc2+β2

TM mode

Ezs=Jn[βcρ](Ancosnϕ+Bnsinnϕ)ejβz

TE mode

Hzs=Jn[βcρ](Ancosnϕ+Bnsinnϕ)ejβz

Dielectric Slab Waveguide

  • cutoff wavelength
λc=2dεr1εr2mm=0,1,2,

thinking

k2dcosθi2Γ=2mπ2πεr1λ0dcosθiΓ=mπΓ=kdcosθimπ

when cutoff Γ=0

kcdcosθi=mπ2πεr1λcdcosθi=mπ2πεr1λcd1ε2ε1=mπλc=2dεr1εr2m