Feedback Miller Compensation¶ VoIi=(sCf−gm)R1R21+sX(s)+s2Y(s)X(s)=R1C1+R2C2+R1Cf(1+gmR2)+R2CfY(s)=(C1C2+C1Cf+C2Cf) R1R2=({C1,C2,Cf}2)⋅R1R2 DC gain A0=A(0)=−gmR1R2 zero z=gm/Cf by definition, when A(s)|s=z=A(z)=0 implies there is no (AC)current go through RD, thus we can easily have (Vi−Vo)sCf=Vi gm⟹sCf=gm poles consider case without Cf 1+sXo(s)+s2Yo(s)=(1+sR1C1)(1+sR2Cs)⟹{Xo(s)=R1C1+R2C2Yo(s)=R1R2C1C2 now consider Cf ⟹{X(s)=R1C1′+R2C2′=R1(C1+Cf−miller)+R2(C2+Cf)Y(s)=(C1C2+C1Cf+C2Cf) R1R2 Pole Splitting¶ D(s)=(1+sωp1′)(1+sωp2′)=1+X(s)s+Y(s)s2 assume ωp1′ dominates (ωp1≪ωp2), then D(s)≈1+sωp1+s2ωp1ωp2⟹{ωp1=1R1C1+R2C2+R1Cf(1+gmR2)+R2Cf≈1gmR1R2Cfωp2=gmCfC1C2+C1Cf+C2Cf