Skip to content

Ouput Stage

Terminology

  • THD: Total Harmonic Distortion

Class A

  • Power delivered to load (\(P_L\))
\[ \begin{gather} P_L=V_{O-rms}\cdot I_{L-rms}=\frac{1}{2}\frac{{V_{O-p}}^{2}}{R_L} \end{gather} \]
  • Power drawn from supply (\(P_S\))
\[ \begin{align} P_S &= (P \text{ from } M_1)+(P \text{ from } M_2) \\\\ &=V_{DD}\overline {I_{D1}}+V_{SS}I_{D2} \\\\ &= (V_{DD}+V_{SS})I \end{align} \]
note

consider the original definition of (AC) power

\[ \begin{gather} P=\frac{1}{2\pi}\int_0^{2\pi}{v(t)i(t)\,dt} \end{gather} \]

in the \(P_L\) case, we have the vary \(v_O\), thus we write

\[ \begin{gather} P_L=\frac{1}{2}V_pI_p\cos(\theta)=V_{rms}I_{rms} \end{gather} \]

however, in the \(P_S\) case, we have an constant source \(V_{DD}\) and \(V_{SS}\), thus

\[ \begin{align} P_S &= \frac{1}{2\pi}\int_0^{2\pi}{V\cdot i(t)\,dt} \\\\ &= V\cdot \frac{1}{2\pi}\int_0^{2\pi}{i(t)\,dt} \\\\ &= V\cdot I_{avg} \end{align} \]

Class B

  • Power delivered to load (\(P_L\))

ignoring crossover distortion

\[ \begin{gather} P_L=\frac{1}{2}\frac{{V_{O-p}}^{2}}{R_L} \end{gather} \]
  • Power drawn from supply (\(P_S\))

for each MOS, only conducting in half period

\[ \begin{align} P_{Sn}=P_{Sp}&={V_{DD}\cdot \overline{I_D}} \\\\ &= V_{DD}\cdot \frac{1}{2\pi}\int_0^{2\pi}{\frac{V_{O-p}}{R_L}\sin\theta \,d\theta} \\\\ &= V_{DD}\cdot \frac{V_{O-p}}{\pi R_L} \end{align} \]

and for total power

\[ \begin{gather} P_S=P_{Sp}+P_{Sn}=\frac{2}{\pi}\frac{V_{O-p}}{R_L}V_{DD} \end{gather} \]
  • efficiency \(\eta\)
\[ \begin{gather} \eta = \frac{P_L}{P_S}=\frac{\pi}{4}\frac{V_{o-p}}{V_{DD}} \end{gather} \]
  • dissipated power \(P_D\)
\[ \begin{gather} P_D = P_S - P_L = \frac{2}{\pi}\frac{V_{O-p}}{R_L}V_{DD} - \frac{1}{2}\frac{V_{O-p}^{2}}{R_L} \end{gather} \]
  • \(P_{D-max}\) w.r.t \(V_{o-p}\)
\[ \begin{gather} \frac{d P_D}{d V_{o}}=\frac{2}{\pi}\frac{V_{DD}}{R_L}-\frac{V_o}{R_L}=0 \\\\ \implies V_o=\frac{2}{\pi}V_{DD} \\\\ \implies P_{D-max} = 2P_{Dn-max} = 2P_{Dp-max}=\frac{2V_{DD}^{2}}{\pi^{2}R_L} \end{gather} \]

Class AB

CS Buffer

  • Output Resistance consider feedback (without \(R_L\)) \(R_{out}\)
\[ \begin{gather} R_{out-p}=\frac{r_o}{1+\mu g_{mp}\,r_o} \approx \frac{1}{\mu g_{mp}} \\\\ R_{out-n}=\frac{r_o}{1+\mu g_{mn}\,r_o} \approx \frac{1}{\mu g_{mn}} \\\\ \implies R_{out}= R_{out-p} || R_{out-n}=\frac{1}{\mu(g_{mp}+g_{mn})} \end{gather} \]
  • Gain Error \(G_E\)
\[ \begin{gather} G_E\equiv\frac{v_o-v_i}{v_i}=\frac{A}{1+A}-1=-\frac{1}{1+A}\approx \frac{-1}{A}=\frac{-1}{2\mu g_m R_L} \end{gather} \]

Class D

  • Theoretically power-conversion efficiency is \(100\%\)
    since the input 1/0 pulse make transistors act as on-off switch, when the transistor on, there is no cross voltage, but current pass through. On the other hand, when transistor off, there is a large cross voltage but no current.

Power MOSFET

  • High \(V_t\): \(\quad 2V \sim 4V\)
  • In saturation region:
    • for low \(V_{GS}\):   \(i_D \propto {V_{GS}}^{2}\)
    • for high \(V_{GS}\):   \(i_D \propto {V_{GS}}\)
      • (the velocity saturation is due to the saturation of mobility \(\mu\))

Temperature Effects

\[ i_D=\frac{1}{2}\mu C_{ox} \frac{W}{L}(V_{GS}-V_t)^2 \]

for \(T \uparrow\) \(\implies\) \(\mu\downarrow\), \(V_T \downarrow\)

  • for low \(V_{GS}\), \(T \uparrow \implies i_D \uparrow\)   (\(\Delta\big[(V_{GS}-V_t)^2\big]\) dominates)

  • for high \(V_{GS}\), \(T\uparrow \implies i_D \downarrow\)   (\(\Delta\big[\mu\big]\) dominates)


Thermal Resistance

  • Junction temp. \(T_J\)
  • Ambient temp. \(T_A\)
  • Thermal resistance between junction and ambience. \(\theta_{JA}\)

  • Temperature here acts as voltage, and the dissipated power acts as current. Thus by Ohm's law we have

\[ \begin{gather} T_{Jmax}-T_A=P_{Dmax}\,\theta_{JA} \end{gather} \]

Two Stage CMOS op-amp

Common-Mode

\[ \begin{gather} A_{cm} \approx \frac{-1}{2g_{m3}\,R_{SS}} \\\\ CMRR \equiv \frac{|A_d|}{|A_{cm}|}=g_{m1}(r_{o2}||r_{o4})\cdot 2g_{m3}R_{SS} \end{gather} \]

Input Common-Mode Range

  • lower limit (\(M_1\) leaving saturation, when \(V_{OV1} = V_{DS1}\))
\[ \begin{gather} V_{ICM}+|V_{tp}| \geq V_{D3}=-V_{SS}+V_{GS3} \\\\ V_{ICM} \geq -V_{SS}+V_{GS3}-|V_{tp}| \end{gather} \]
  • upper limit (\(M_5\) leaving saturation)
\[ \begin{gather} V_{DD}-V_{OV5} \geq V_{ICM} +V_{SG1} \\\\ V_{ICM} \leq V_{DD}-V_{OV5} - V_{SG1} \end{gather} \]

Output Swing

  • lower limit
\[ \begin{gather} v_O \leq -V_{SS}+V_{OV6} \end{gather} \]
  • upper limit
\[ \begin{gather} v_O \geq V_{DD}-V_{OV7} \end{gather} \]

PSRR

definition

\[ \begin{gather} \text{PSRR}^{+} \equiv \frac{A_d}{A^{+}} & \text{where } A^{+}\equiv \frac{v_o}{v_{dd}} \\\\ \text{PSRR}^{-} \equiv \frac{A_d}{A^{-}} & \text{where } A^{-}\equiv \frac{v_o}{v_{ss}} \end{gather} \]
  • \(\text{PSRR}^{+} \to \infty\) :
    just remember that \(v_O\) via second stage and \(v_O\) via first stage would cancel out each other.

  • \(\text{PSRR}^{-}\)

    • \(v_O\) from first stage is \(0\) (don't know fucking why)
    • \(v_O\) from second stage is
\[ \begin{gather} v_o=v_{ss} \frac{r_{o7}}{r_{o7}+r_{o6}} \\\\ \text{PSRR}^{-}= \frac{A_d}{A^{-}}=\frac{g_{m1}(r_{o2}||r_{o4})g_{m6}(r_{o6}||r_{o7})}{\frac{r_{o7}}{r_{o7}+r_{o6}}} \end{gather} \]

Slew Rate

when \(|v_{id}| > \sqrt2 V_{OV}\), the current would go through only one side of differential pair.

\[ \begin{gather} v_o(t)=\frac{Q_C}{C_C}=\frac{I}{C_C}t \\\\ \text{SR}=\frac{I}{C_C}=\frac{I}{G_{m1}/\omega_t}=\frac{I\omega_t}{I/V_{OV}}=\omega_tV_{OV} \end{gather} \]

Folded-Cascode CMOS op-amp

Input Common-Mode Range

  • upper limit (\(M_1, M_2\) leave saturation)
\[ \begin{gather} V_{ICM}-V_{tn} \leq V_{DD}-V_{OV9} \\\\ \implies V_{ICM} \leq V_{DD}-V_{OV9}+V_{tn} \end{gather} \]
  • lower limit (\(M_{11}\) leaves saturation)
\[ \begin{gather} V_{ICM}-V_{GS1} \geq -V_{SS} +V_{OV11} \\\\ \implies V_{ICM}\geq -V_{SS} +V_{OV11}+V_{GS1} \end{gather} \]

Output Swing

  • upper limit (\(M_4\) leaves saturation)
\[ \begin{gather} v_O \leq V_{DD}-V_{OV10}-V_{OV4} \end{gather} \]
  • lower limit (\(M_6\) leaves saturation)
\[ \begin{gather} v_O \geq -V_{SS}+V_{GS7}+V_{GS5}-V_{tn6} \end{gather} \]