Skip to content

Fourier Integral

  • Definition assume that
\[ \begin{gather} \int_{-\infty}^{\infty}{\left|f(x)\right|dx}\ \leftarrow\ \text{converge} \end{gather} \]

converges, then

\[ f(x)=\int_0^{\infty}{\big[A(\omega)\ \cos{(\omega x)}+B(\omega )\sin{(x)}\big]\ d\omega} \]
\[ \begin{align} A(\omega)=\frac{1}{\pi}\int_{-\infty}^{\infty}{f(x)\ \cos{(\omega x)}\ dx} \qquad B(\omega)=\frac{1}{\pi}\int_{-\infty}^{\infty}{f(x)\ \sin{(\omega x)}\ dx} \end{align} \]

Fourier Cosine Integral

\[ f(x)=\int_0^{\infty}{A(\omega)\ \cos{(\omega x)}\ d\omega} \]
\[ \begin{align} A(\omega)=\frac{2}{\pi}\int_0^{\infty}{f(x)\ \cos{(\omega x)}\ dx} \end{align} \]

Fourier Sine Integral

\[ \begin{align} f(x)=\int_0^{\infty}{B(\omega)\ \sin{(\omega x)}\ d\omega}\\\\ B(\omega)=\frac{2}{\pi}\int_0^{\infty}{f(x)\ \sin{(\omega x)}\ dx} \end{align} \]

Complex Fourier Integral

Similar to complex fourier series.

\[ \begin{align} f(x)=\int_{-\infty}^{\infty}{C(\omega)e^{i\omega x}d\omega}\\\\ C(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty}{f(x)e^{-i\omega x}dx} \end{align} \]