Fourier Integral¶ Definition assume that ∫−∞∞|f(x)|dx ← converge converges, then f(x)=∫0∞[A(ω) cos(ωx)+B(ω)sin(x)] dω A(ω)=1π∫−∞∞f(x) cos(ωx) dxB(ω)=1π∫−∞∞f(x) sin(ωx) dx Fourier Cosine Integral¶ f(x)=∫0∞A(ω) cos(ωx) dω A(ω)=2π∫0∞f(x) cos(ωx) dx Fourier Sine Integral¶ f(x)=∫0∞B(ω) sin(ωx) dωB(ω)=2π∫0∞f(x) sin(ωx) dx Complex Fourier Integral¶ Similar to complex fourier series. f(x)=∫−∞∞C(ω)eiωxdωC(ω)=12π∫−∞∞f(x)e−iωxdx