Skip to content

Fourier TransformΒΆ

Complex form or exponential form of Fourier Integral

\[ 𝔉\big[f(t)\big]=\int^{\infty}_{-\infty}{e^{-i\omega t}\ f(t)\ dt} \]

assume that

\[ \begin{gather} \int^{\infty}_{-\infty}{|f(x)|dx} \end{gather} \]

converges

  • Comparison

    1. compare to Laplace transform

      \[\begin{align} s \to i\omega\\\\ \int_0^{\infty} \to \int^{\infty}_{-\infty} \end{align}\]
    2. compare to Fourier Series Fourier Transform can be regarded as Fourier series whose \(p \to \infty\).


Amplitude SpectrumΒΆ

The amplitude spectrum of \(f(t)\) is a graph of \(\big|𝔉\big[f(\omega)\big]\big|\)


Fourier & Inverse Fourier TransformΒΆ

  • Fourier transform

    \[ 𝔉\big[f(x)\big]=\int^{\infty}_{-\infty}{e^{-i\omega x}\ f(x)\ dx} \]
  • inverse Fourier transform

    \[ 𝔉^{-1}\big[F(\omega)\big]=\frac{1}{2\pi}\int_{-\infty}^{\infty}{F(\omega)\ e^{i\omega x}\ d\omega}=f(x) \]

Fourier Sine TransformΒΆ

  • Fourier sine transform

    \[ 𝔉_s\big[f(x)\big]=\int_0^{\infty}{f(x)\ \sin{(\omega x)\ dx=F(\omega)}} \]
  • inverse Fourier sine transform

    \[ 𝔉_s^{-1}\big[F(\omega)\big]=\frac{2}{\pi}\int_0^{\infty}{F(\omega)\,\sin{(\omega x)}\ d\omega}=f(x) \]

Fourier Cosine TransformΒΆ

  • Fourier cosine transform
\[ 𝔉_c\big[f(x)\big]=\int_0^{\infty}{f(x)\,\cos{(\omega x)}\ dx}= F(\omega) \]
  • inverse Fourier cosine transform
\[ 𝔉_c^{-1}\big[F(\omega)\big]=\frac{2}{\pi}\int_0^{\infty}{F(\omega)\ \cos{(\omega x)}\ d\omega}=f(x) \]

Fourier Transform propertiesΒΆ

LinearityΒΆ

\[ \begin{gather} \alpha, \beta \in ℝ \\\\ 𝔉\big[\alpha f(t)+\beta g(t)\big]=\alpha𝔉\big[f(t)\big]+𝔉\big[\beta g(t)\big] \end{gather} \]

Time ShiftingΒΆ

\[ \begin{gather} 𝔉\big[f(t-t_0)\big]=e^{-i\omega t_0} \ 𝔉\big[f(t)\big] \end{gather} \]
  • Inverse Time Shifting

    \[ \begin{gather} 𝔉^{-1}\big[e^{-i\omega t_0}F(\omega)\big](t)=f(t-t_0) \end{gather} \]

Frequency ShiftingΒΆ

\[ \begin{gather} 𝔉\big[e^{i\omega_0 t}\ f(t)\big]=F(\omega-\omega_0) \end{gather} \]
  • Inverse Frequency Shifting

    \[ \begin{align} 𝔉^{-1}\big[F(\omega-\omega_0)\big]=e^{i\omega_0 t} \ f(t) \end{align} \]

ScalingΒΆ

\[ \begin{gather} 𝔉\big[f(ct)\big]=\frac{1}{|c|}F(\frac{\omega}{c}) \end{gather} \]
  • Inverse Scaling
\[ \begin{gather} 𝔉^{-1}\big[F(\frac{\omega}{c})\big]=|c|\ f(ct) \end{gather} \]

Time ReversalΒΆ

\[ \begin{gather} 𝔉\big[f(-t)\big]=F(-\omega)\\\\ 𝔉^{-1}\big[F(-\omega)\big]=f(-t) \end{gather} \]

SymmetryΒΆ

\[ \begin{gather} 𝔉\big[F(t)\big]=2\pi f(-\omega) \end{gather} \]

modulationΒΆ

\[ \begin{align} 𝔉\big[f(t)\cos{(\omega_0 t)}\big]&=\frac{1}{2}[F(\omega+\omega_0)+F(\omega-\omega_0)]\\\\ 𝔉\big[f(t) \sin(\omega_0 t)\big]&=\frac{i}{2}[F(\omega+\omega_0)-F(\omega-\omega_0)] \end{align} \]

particular exampleΒΆ

prof. Laplace Transform

\[ \begin{gather} 𝔉\big[H(t)e^{-at}\big]=\frac{1}{a+i\omega} \end{gather} \]

Frequency DifferentiationΒΆ

\[ \begin{gather} 𝔉\big[t^nf(t)\big]=(i)^nF^{(n)} \end{gather} \]

Transforms of DerivativesΒΆ

  1. for Fourier transform

    \[ \begin{align} 𝔉\big[f'(x)\big]=i\omega F(\omega) \\\\ 𝔉\big[f^{(n)}\big]=(i\omega)^{n}\ F(\omega) \end{align} \]
  2. for Fourier sine transform

    \[ \begin{align} 𝔉_s\big[f'(x)\big]=-\omega \ 𝔉_c\big[f(x)\big] \\\\ 𝔉_s\big[f''(x)\big]= -\omega^2\ 𝔉_s\big[f(x)\big]+\omega f(0) \end{align} \]
  3. for Fourier cosine transform

    \[ \begin{align} 𝔉_c\big[f'(x)\big]=\omega \, 𝔉_s\big[f(x)\big]-f(0) \\\\ 𝔉_c\big[f''(x)\big]=-\omega^2𝔉_c\big[f(x)\big]-f'(0) \end{align} \]

Transform of IntegralΒΆ

\[ \begin{align} 𝔉\left[\int_{-\infty}^{t}{f(\tau )d\tau}\right]=\frac{1}{i\omega}F(\omega) \end{align} \]

ConvolutionΒΆ

  • Definition
\[ \begin{gather} f(t)*g(t)=\int_{-\infty}^{\infty}{f(\tau)\ g(t-\tau)\ d\tau} \end{gather} \]
  • Property
\[ \begin{align} f * g &= g * f \\\\ (\alpha f+\beta g)*h&=\alpha(f*h)+\beta(g*h) \end{align} \]
  • Theorem
\[ \begin{gather} \int_{-\infty}^{\infty}{\left[f(t)*g(t)\right]\ dt}=\int^{\infty}_{-\infty}{f(t)dt}\cdot \int^{\infty}_{-\infty}{g(t)dt}\\\\ 𝔉\big[f(t) * g(t)\big]=F(\omega) \ G(\omega)\\\\ 𝔉\left[f(t)\ g(t)\right]=\frac{1}{2\pi}F(\omega)*G(\omega) \end{gather} \]

Dirac Delta FunctionΒΆ

  • Definition

    \[ \begin{gather} \delta(t)=\lim_{a\to 0}{\left[\frac{1}{2a}H(t+a)-H(t-a)\right]} \end{gather} \]

Fourier TransformΒΆ

\[ \begin{gather} 𝔉\left[\delta(t)\right]=𝔉\left[\lim_{a\to 0}{\left[\frac{1}{2a}H(t+a)-H(t-a)\right]}\right]=\lim_{a\to 0}{\frac{\sin{(a\omega)}}{a\omega}}=1 \end{gather} \]

FilteringΒΆ

\[ \begin{gather} \int^{\infty}_{-\infty}{f(t)\delta(t-t_0)\ dt}=f(t_0) \end{gather} \]

Discrete Fourier TransformΒΆ

Let \(u=\left\{u_j\right\}^{N-1}_{j=0}\)

\[ \begin{gather} D[u]=U_k= \sum_{j=0}^{N-1}{u_j\exp{\left(-i\ \omega_0 j\ \frac{T}{N}\right)}} = \sum_{j=0}^{N-1}{u_j\exp{\left(-i\ 2\pi\ j\ \frac{1}{N}\right)}} \end{gather} \]

LinearityΒΆ

\[ \begin{gather} D\left[au+bv\right]=aU_k+bV_k \end{gather} \]

PeriodicityΒΆ

\[ \begin{gather} U_{k+N}=U_k \end{gather} \]

Inverse N-point DFTΒΆ

\[ \begin{gather} u_j=\frac{1}{N}\sum_{j=0}^{N-1}{U_k\exp{\left(i\ \omega_0 j\ \frac{T}{N}\right)}}=\frac{1}{N}\sum_{j=0}^{N-1}{U_k\exp{\left(i\ 2\pi \ j\ \frac{1}{N}\right)}} \end{gather} \]

Complex Fourier CoefficientsΒΆ

\[ \begin{gather} d_k \approx \frac{1}{N}\cdot U_k \end{gather} \]

note that the coefficient of complex Fourier \(C_\omega\)

\[ \begin{gather} C_\omega=\frac{1}{2\pi}\cdot 𝔉\left[f(t)\right] \end{gather} \]

Sampled Fourier SeriesΒΆ

\[ \begin{gather} S_M\left(\frac{jT}{n}\right)\approx\frac{1}{N}\sum_{k=0} ^{N-1}{V_k\ e^{i\omega_0 jkT/N }} \end{gather} \]

in which

\[ V_k=\left\{ \begin{align} &U_k &\text{for }k=0, 1, \dots, M \\\\ &0 &\text{for }k=M+1, \dots, N-M+1 \\\\ &U_k &\text{for }k=N-M, \dots, N-1 \end{align}\right. \]

Solving the BVPΒΆ

  • BVP (Boundary Value Problem)

There are three possible condition below

  1. \(-\infty < x <\infty\)

    \(\Rightarrow\) Fourier transform

  2. \(0 < x < \infty\) and \(u(x,y)\bigg|_{x=0} = 0\)

    \(\Rightarrow\) Fourier sine transform

  3. \(0 < x < \infty\) and \(\frac{\partial}{\partial x}u(x, y)\bigg|_{x=0}=0\)

    \(\Rightarrow\) Fourier cosine transform


Method of Separation of VariableΒΆ

kernel : assume that 1.

\[u(x,y)=X(x)\ Y(y)\]

2.

\["f(x)"\ =\ "f(y)"\ =\ -\lambda\]