Fourier TransformΒΆ
Complex form or exponential form of Fourier Integral
assume that
converges
-
Comparison
-
compare to Laplace transform
\[\begin{align} s \to i\omega\\\\ \int_0^{\infty} \to \int^{\infty}_{-\infty} \end{align}\] -
compare to Fourier Series Fourier Transform can be regarded as Fourier series whose \(p \to \infty\).
-
Amplitude SpectrumΒΆ
The amplitude spectrum of \(f(t)\) is a graph of \(\big|π\big[f(\omega)\big]\big|\)
Fourier & Inverse Fourier TransformΒΆ
-
Fourier transform
\[ π\big[f(x)\big]=\int^{\infty}_{-\infty}{e^{-i\omega x}\ f(x)\ dx} \] -
inverse Fourier transform
\[ π^{-1}\big[F(\omega)\big]=\frac{1}{2\pi}\int_{-\infty}^{\infty}{F(\omega)\ e^{i\omega x}\ d\omega}=f(x) \]
Fourier Sine TransformΒΆ
-
Fourier sine transform
\[ π_s\big[f(x)\big]=\int_0^{\infty}{f(x)\ \sin{(\omega x)\ dx=F(\omega)}} \] -
inverse Fourier sine transform
\[ π_s^{-1}\big[F(\omega)\big]=\frac{2}{\pi}\int_0^{\infty}{F(\omega)\,\sin{(\omega x)}\ d\omega}=f(x) \]
Fourier Cosine TransformΒΆ
- Fourier cosine transform
- inverse Fourier cosine transform
Fourier Transform propertiesΒΆ
LinearityΒΆ
Time ShiftingΒΆ
-
Inverse Time Shifting
\[ \begin{gather} π^{-1}\big[e^{-i\omega t_0}F(\omega)\big](t)=f(t-t_0) \end{gather} \]
Frequency ShiftingΒΆ
-
Inverse Frequency Shifting
\[ \begin{align} π^{-1}\big[F(\omega-\omega_0)\big]=e^{i\omega_0 t} \ f(t) \end{align} \]
ScalingΒΆ
- Inverse Scaling
Time ReversalΒΆ
SymmetryΒΆ
modulationΒΆ
particular exampleΒΆ
prof. Laplace Transform
Frequency DifferentiationΒΆ
Transforms of DerivativesΒΆ
-
for Fourier transform
\[ \begin{align} π\big[f'(x)\big]=i\omega F(\omega) \\\\ π\big[f^{(n)}\big]=(i\omega)^{n}\ F(\omega) \end{align} \] -
for Fourier sine transform
\[ \begin{align} π_s\big[f'(x)\big]=-\omega \ π_c\big[f(x)\big] \\\\ π_s\big[f''(x)\big]= -\omega^2\ π_s\big[f(x)\big]+\omega f(0) \end{align} \] -
for Fourier cosine transform
\[ \begin{align} π_c\big[f'(x)\big]=\omega \, π_s\big[f(x)\big]-f(0) \\\\ π_c\big[f''(x)\big]=-\omega^2π_c\big[f(x)\big]-f'(0) \end{align} \]
Transform of IntegralΒΆ
ConvolutionΒΆ
- Definition
- Property
- Theorem
Dirac Delta FunctionΒΆ
-
Definition
\[ \begin{gather} \delta(t)=\lim_{a\to 0}{\left[\frac{1}{2a}H(t+a)-H(t-a)\right]} \end{gather} \]
Fourier TransformΒΆ
FilteringΒΆ
Discrete Fourier TransformΒΆ
Let \(u=\left\{u_j\right\}^{N-1}_{j=0}\)
LinearityΒΆ
PeriodicityΒΆ
Inverse N-point DFTΒΆ
Complex Fourier CoefficientsΒΆ
note that the coefficient of complex Fourier \(C_\omega\)
Sampled Fourier SeriesΒΆ
in which
Solving the BVPΒΆ
- BVP (Boundary Value Problem)
There are three possible condition below
-
\(-\infty < x <\infty\)
\(\Rightarrow\) Fourier transform
-
\(0 < x < \infty\) and \(u(x,y)\bigg|_{x=0} = 0\)
\(\Rightarrow\) Fourier sine transform
-
\(0 < x < \infty\) and \(\frac{\partial}{\partial x}u(x, y)\bigg|_{x=0}=0\)
\(\Rightarrow\) Fourier cosine transform
Method of Separation of VariableΒΆ
kernel : assume that 1.
2.