Skip to content

Higher Order DE

homogeneous Equations

Definition

\[a_n(x)\frac{d^ny}{dx^n}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\dots + a_1(x)\frac{dy}{dx}+a_0(x)y=g(x)\]

or be written as

\[a_n(x)D^n + a_{n-1}(x)D^{n-1}+\dots +a_1(x)D + a_0(x)y=g(x)\]
  • \(g(x) = 0 \qquad \rightarrow \quad\) homogeneous
  • \(g(x) \neq 0 \qquad \rightarrow \quad\) non-homogeneous

General Solution (Complementary Function)

  • Theorem 4.1.5

    For an nth order homogeneous liner DE \(L(y) = 0\), if

    1. \(y_1(t), y_2(t), \dots , y_n(t)\) are the solution to \(L(y) = 0\)
    2. \(y_1(t), y_2(t), \dots , y_n(t)\) are linearly independent
    3. Determinate whether they are liner independent : Wronskian.
  • Expression

    Any solution of the homogeneous liner DE can be expressed as

    \[y=c_1y_1 + c_2y_2 + \dots + c_ny_n\]
  • Any nth order homogeneous linear DE has n linearly independent solutions.

  • fundamental set of solutions

    \[y_1(t), y_2(t), \dots , y_n(t)\]
  • general solution (aka complementary function)

\[y=c_1y_1 + c_2y_2 + \dots + c_ny_n\]

2nd with an known solution

2nd order linear homogeneous DE with an known solution

\[a_2(x)y''+a_1(x)y'+a_0(x)y=0\]

By virtue of solution below, we can get another solution and therefore get complementary function.

Conditions

  1. second order
  2. linear
  3. homogeneous
  4. one of the nontrivial solution \(y_1(x)\) has been known

#### Standard Form

\[y''+P(x)y'+Q(x)y=0\]

Solution

(直接背!!!)

\[y_2(x) = y_1(x) \int{\frac{e^{-\int P(x)dx}}{y_1^2(x)}dx}\]

see proof. (TODO)


Linear DE with Constant Coefficients

Homogeneous linear DE with constant coefficients

\[a_ny^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_1y'(x) + a_0y= 0\]

Condition

  1. homogeneous
  2. linear
  3. constant coefficients

kernel concept

Suppose the solutions has the form of \(e^{mx}\)

Auxiliary Function

change \(y^{(n)}\) into \(m^n\)

\[a_nm^n+a_{n-1}m^{n-1}+\dots + a_1m+a_0=0\]

solve \(m\).

Solution to 2nd Order

\[ \begin{gather} a_2y''(x) + a_1y'(x) + a_0y(x) = 0\\ \downarrow \\ a_2 m^2 + a_1 m + a_0 = 0 \end{gather} \]
  • Case 1 : \(m_1 \neq m_2, \quad m_1, m_2 \in ℝ\), (D > 0)

    \[m_1, m_2 = \frac{-a_1 \pm \sqrt{a_1^2-4a_2a_0}}{2a_2}\]

    thus

    \[y = c_1e^{m_1x} + c_2e^{m_2x}\]

    if

    \[ m_1, m_2 = \alpha \ \pm \ \beta \]

    we can also write

    \[ y=e^{\alpha x}(c_1\cosh{\beta x} + c_2\sinh{\beta x}) \]


  • Case 2 \(m_1 = m_2\), (D = 0)

    \[y_1 = e^{m_1x}\]

    \(y_2\) can be find by the method mentioned above.

    then we found that

    \[y_2 = x\ e^{m_1x}\]


  • Case 3 \(m_1 \neq m_2\), \(m_1\) and \(m_2\) are conjugate(共軛) and complex, (D < 0)

    \[ \begin{gather} m_1 = \alpha + i\beta \qquad m_2 = \alpha - i\beta \\ \\ \alpha = -\frac{a_1}{2a_2}, \qquad \beta = \frac{\sqrt{4a_2a_0 - a_1^2}}{2a_2} \end{gather} \]

    thus

    \[ \begin{gather} y = C_1e^{\alpha x + i\beta x} + C_2 e^{\alpha x - i\beta x} \end{gather} \]

    another form : proof

    \[y = e^{\alpha x}(c_1 \cos{\beta x} + c_2 \sin{\beta x})\]

Solution to Higher Order

nth order ODE

\(p, q \in [1, n], \quad \text{and} \quad p \neq q\)

  • Case 1 : \(m_p \neq m_q\) 都是獨立解

  • Case 2 : 有重根 (在\(m_p\)處重根 k 個)

    solution : \(\quad e^{m_px},\quad x\cdot e^{m_px},\quad x^2\cdot e^{m_px}, \dots ,\quad x^{k-1}\cdot e^{m_px}\)

  • Case 3 : 有k對複數解

    solutions :

    \[ \begin{align} e^{\alpha x} \cos(\beta x),\quad xe^{\alpha x} \cos(\beta x),\quad x^2e^{\alpha x} \cos(\beta x),\dots , x^{k-1}e^{\alpha x}\cos (\beta x) \\\\ e^{\alpha x} \sin(\beta x),\quad xe^{\alpha x} \sin(\beta x),\quad x^2e^{\alpha x} \sin(\beta x),\dots , x^{k-1}e^{\alpha x}\sin (\beta x) \end{align} \]

Cauchy-Euler Equation

Cauchy-Euler Equation is homogeneous linear DE in the form below

\[a_n x^n y^{(n)}(x) + a_{n-1}x^{n-1}y^{(n-1)}(x) + \dots + a_1 xy'(x) + a_0y(x) = g(x) \]

Kernel Concept

guess the solution has the form \(y(x) = x^m\)

then we can change \(x^k\ \frac{d^k}{dx^k}\) to \(\frac{m!}{(m-k)!}\)


Solution to 2nd Order

\[a_2x^2y''(x) + a_1xy'(x) + a_0y = 0\]
  • auxiliary function :

    \[ \begin{align} a_2m(m-1) &+ a_1m &+ a_0 &= 0\\\\ a_2m^2 &+ (a_1 - a_2)m &+ a_0 &= 0 \end{align} \]

than solve roots with

\[ \begin{align} m = \frac{-b \pm \sqrt{D}}{2a} \end{align} \]


  • Case 1 : ( \(m_1 \neq m_2, \quad m_1, m_2 \in ℝ\) )

    \[y_c = c_1x^{m_1} + c_2 x^{m_2}\]
  • Case 2 : ( \(m_1 = m_2\) )

    use the method of reduction of order

    \[y_2(x) = y_1(x) \int{\frac{e^{-\int P(x)dx}}{y_1^2(x)}dx}\]
    \[y_1(x) = x^{m_1}\]
    \[y_2(x) = x^{m_1} \cdot \ln{|x|}\]

    直接背結論 \(\uparrow\)

  • Case 3 : ( \(D < 0\) )

    \[m_1 = \alpha + i\beta, \qquad m_2 = \alpha - i\beta\]

    直接背

    \[y_c = x^{\alpha}\big[c_1\cos{(\beta \ln x)} + c_2 \sin{(\beta \ln x)}\big]\]

Solution to Higher Order

  • Case 1 : 皆唯一解

    \[x^{m_p}\]
  • Case 2 : 在\(m_p\)處有 \(k\) 個重根

    \[x^{m_0}, \quad x^{m_0}\ln x,\quad x^{m_0}\cdot (\ln x)^2, \dots ,\quad x^{m_0}\cdot (\ln x)^{k-1} \]
  • Case 3 : 有一對複數根

    \[x^{\alpha}\cos{(\beta \ln x)}, \quad x^{\alpha}\sin{(\beta \ln x)} \]
  • Case 4 : 有 \(k\) 對複數解

    \[ \begin{align} x^{\alpha}\cos{(\beta \ln x)}, \quad x^{\alpha}\cos{(\beta \ln x)} \cdot \ln x \ , \dots,\ x^{\alpha}\cos{(\beta \ln x)}\cdot (\ln x)^{k-1} \\\\ x^{\alpha}\sin{(\beta \ln x)}, \quad x^{\alpha}\sin{(\beta \ln x)}\cdot \ln x\ , \dots,\ x^{\alpha}\sin{(\beta \ln x)}\cdot (\ln x)^{k-1} \end{align} \]

Non-homogeneous Equations

Concept

we can solve any non-homogeneous equations by

\[ y = y_c + y_p\]

in which \(y_c\) is the complementary function and \(y_p\) is the particular solution to equation.


Linear DE with Constant Coefficients

Condition

  1. linear
  2. constant coefficient
  3. \(g^{(k)} \quad (k \in ℕ )\) contain finite number of terms.1

Solution

Trial particular solutions

\(g(x)\) Form of \(y_p\)
\(\text{const}\qquad \qquad\) \(A\)
\(5x + 7\) \(Ax + B\)
\(3x^2 - 2\) \(Ax^2 + Bx + C\)
\(x^3 - x + 1\) \(Ax^3 + Bx^2 + Cx + D\)
\(\sin{4x}\) \(A\cos{4x} + B\sin{4x}\)
\(\cos{2x}\) \(A\cos{2x} + B\sin{2x}\)
\(e^{5x}\) \(Ae^{5x}\)
\((9x - 2)e^{5x}\) \((Ax + B)\ e^{5x}\)
\(x^2 e^{5x}\) \((Ax^2 + Bx + C) \ e^{5x}\)
\(x\ e^{3x}\sin{4x}\) \((Ax + B)\ e^{3x}\ \cos{4x} + (Cx + D)\ e^{3x}\ \sin{4x}\)

e.g.

\[g(x) = e^{2x} + xe^{3x}\]
\[ \begin{align}\\ & y_{p_1} = A\ e^{2x} & y_{p_2} = (Bx+C)\ e^{3x}\\\\ \end{align} \]
\[y_p = y_{p_1} + y_{p_2} = A\ e^{2x} + (Bx+C)\ e^{3x}\]

Glitch

  • Condition 1 : particular cannot belong to complementary function.

    e.g.

    \[y'' -5y' +4y= 8e^x\]

    complementary function :

    \[ y_c = c_1e^x + c_2e^{4x}\]
    \[ \begin{gather} \because Ae^{x} \in y_c \end{gather} \]

    therefore we guess the particular solution with an extra \(x\).

    \[y_p = Axe^x\]
  • Condition2 :

    \[g(x), \ g'(x), \ g''(x), \ g'''(x), \dots\]

    can only contain infinite number of terms.

Any Linear DE

\[a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}+\dots + a_1(x)y'(x) + a_0(x)y=g(x) \]

Variation of Parameters

Solution to 2nd Order

\[a_2(x)y''(x) + a_1(x)y'(x) + a_0(x)y(x) = g(x)\]

or in the form

\[ y''(x)+P(x)y'+Q(x)y=f(x) \]

Suppose the complementary function is

\[c_1y_1(x) + c_2y_2(x)\]

then assume particular solution as

\[y_p=u_1(x)\ y_1(x)+u_2(x)\ y_2(x)\]

and then we can get

\[ \Bigg\{ \begin{eqnarray} y_1u_1' + y_2u_2' &= 0\\ y_1'u_1' + y_2'u_2' &= f(x) \end{eqnarray} \]
\[ \begin{align} \\u_1'= \frac{W_1}{W} & \qquad & u_1= \int{u_1dx} \\u_2' = \frac{W_2}{W} & & u_2 = \int{u_2dx} \end{align} \]

in which

\[ \begin{align} W = \text{Wronskian} &= \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \\ \end{vmatrix} \\\\ W_1 &= \begin{vmatrix} 0 & y_2 \\ f(x) & y_2' \end{vmatrix} \\\\ W_2 &= \begin{vmatrix} y_1 & 0\\ y_1' & f(x) \end{vmatrix} \end{align} \]

ref : Wronskian

Higher Order

similar to the way above.


  1. \(y_p\) should be a linear combination of

    \[g(x), \ g'(x), \ g''(x), \ g'''(x), \dots\]

    therefore, we won't get any redundant term.