Higher Order DE
homogeneous Equations¶
Definition¶
or be written as
- \(g(x) = 0 \qquad \rightarrow \quad\) homogeneous
- \(g(x) \neq 0 \qquad \rightarrow \quad\) non-homogeneous
General Solution (Complementary Function)¶
-
Theorem 4.1.5
For an nth order homogeneous liner DE \(L(y) = 0\), if
- \(y_1(t), y_2(t), \dots , y_n(t)\) are the solution to \(L(y) = 0\)
- \(y_1(t), y_2(t), \dots , y_n(t)\) are linearly independent
- Determinate whether they are liner independent : Wronskian.
-
Expression
Any solution of the homogeneous liner DE can be expressed as
\[y=c_1y_1 + c_2y_2 + \dots + c_ny_n\] -
Any nth order homogeneous linear DE has n linearly independent solutions.
-
fundamental set of solutions
\[y_1(t), y_2(t), \dots , y_n(t)\] -
general solution (aka complementary function)
2nd with an known solution¶
2nd order linear homogeneous DE with an known solution
By virtue of solution below, we can get another solution and therefore get complementary function.
Conditions¶
- second order
- linear
- homogeneous
- one of the nontrivial solution \(y_1(x)\) has been known
#### Standard Form
Solution¶
(直接背!!!)
see proof. (TODO)
Linear DE with Constant Coefficients¶
Homogeneous linear DE with constant coefficients
Condition¶
- homogeneous
- linear
- constant coefficients
kernel concept¶
Suppose the solutions has the form of \(e^{mx}\)
Auxiliary Function¶
change \(y^{(n)}\) into \(m^n\)
solve \(m\).
Solution to 2nd Order¶
-
Case 1 : \(m_1 \neq m_2, \quad m_1, m_2 \in ℝ\), (D > 0)
\[m_1, m_2 = \frac{-a_1 \pm \sqrt{a_1^2-4a_2a_0}}{2a_2}\]thus
\[y = c_1e^{m_1x} + c_2e^{m_2x}\]if
\[ m_1, m_2 = \alpha \ \pm \ \beta \]we can also write
\[ y=e^{\alpha x}(c_1\cosh{\beta x} + c_2\sinh{\beta x}) \]
-
Case 2 \(m_1 = m_2\), (D = 0)
\[y_1 = e^{m_1x}\]\(y_2\) can be find by the method mentioned above.
then we found that
\[y_2 = x\ e^{m_1x}\] -
Case 3 \(m_1 \neq m_2\), \(m_1\) and \(m_2\) are conjugate(共軛) and complex, (D < 0)
\[ \begin{gather} m_1 = \alpha + i\beta \qquad m_2 = \alpha - i\beta \\ \\ \alpha = -\frac{a_1}{2a_2}, \qquad \beta = \frac{\sqrt{4a_2a_0 - a_1^2}}{2a_2} \end{gather} \]thus
\[ \begin{gather} y = C_1e^{\alpha x + i\beta x} + C_2 e^{\alpha x - i\beta x} \end{gather} \]another form : proof
\[y = e^{\alpha x}(c_1 \cos{\beta x} + c_2 \sin{\beta x})\]
Solution to Higher Order¶
nth order ODE
\(p, q \in [1, n], \quad \text{and} \quad p \neq q\)
-
Case 1 : \(m_p \neq m_q\) 都是獨立解
-
Case 2 : 有重根 (在\(m_p\)處重根 k 個)
solution : \(\quad e^{m_px},\quad x\cdot e^{m_px},\quad x^2\cdot e^{m_px}, \dots ,\quad x^{k-1}\cdot e^{m_px}\)
-
Case 3 : 有k對複數解
solutions :
\[ \begin{align} e^{\alpha x} \cos(\beta x),\quad xe^{\alpha x} \cos(\beta x),\quad x^2e^{\alpha x} \cos(\beta x),\dots , x^{k-1}e^{\alpha x}\cos (\beta x) \\\\ e^{\alpha x} \sin(\beta x),\quad xe^{\alpha x} \sin(\beta x),\quad x^2e^{\alpha x} \sin(\beta x),\dots , x^{k-1}e^{\alpha x}\sin (\beta x) \end{align} \]
Cauchy-Euler Equation¶
Cauchy-Euler Equation is homogeneous linear DE in the form below
Kernel Concept¶
guess the solution has the form \(y(x) = x^m\)
then we can change \(x^k\ \frac{d^k}{dx^k}\) to \(\frac{m!}{(m-k)!}\)
Solution to 2nd Order¶
-
auxiliary function :
\[ \begin{align} a_2m(m-1) &+ a_1m &+ a_0 &= 0\\\\ a_2m^2 &+ (a_1 - a_2)m &+ a_0 &= 0 \end{align} \]
than solve roots with
-
Case 1 : ( \(m_1 \neq m_2, \quad m_1, m_2 \in ℝ\) )
\[y_c = c_1x^{m_1} + c_2 x^{m_2}\] -
Case 2 : ( \(m_1 = m_2\) )
use the method of reduction of order
\[y_2(x) = y_1(x) \int{\frac{e^{-\int P(x)dx}}{y_1^2(x)}dx}\]\[y_1(x) = x^{m_1}\]\[y_2(x) = x^{m_1} \cdot \ln{|x|}\]直接背結論 \(\uparrow\)
-
Case 3 : ( \(D < 0\) )
\[m_1 = \alpha + i\beta, \qquad m_2 = \alpha - i\beta\]直接背
\[y_c = x^{\alpha}\big[c_1\cos{(\beta \ln x)} + c_2 \sin{(\beta \ln x)}\big]\]
Solution to Higher Order¶
-
Case 1 : 皆唯一解
\[x^{m_p}\] -
Case 2 : 在\(m_p\)處有 \(k\) 個重根
\[x^{m_0}, \quad x^{m_0}\ln x,\quad x^{m_0}\cdot (\ln x)^2, \dots ,\quad x^{m_0}\cdot (\ln x)^{k-1} \] -
Case 3 : 有一對複數根
\[x^{\alpha}\cos{(\beta \ln x)}, \quad x^{\alpha}\sin{(\beta \ln x)} \] -
Case 4 : 有 \(k\) 對複數解
\[ \begin{align} x^{\alpha}\cos{(\beta \ln x)}, \quad x^{\alpha}\cos{(\beta \ln x)} \cdot \ln x \ , \dots,\ x^{\alpha}\cos{(\beta \ln x)}\cdot (\ln x)^{k-1} \\\\ x^{\alpha}\sin{(\beta \ln x)}, \quad x^{\alpha}\sin{(\beta \ln x)}\cdot \ln x\ , \dots,\ x^{\alpha}\sin{(\beta \ln x)}\cdot (\ln x)^{k-1} \end{align} \]
Non-homogeneous Equations¶
Concept¶
we can solve any non-homogeneous equations by
in which \(y_c\) is the complementary function and \(y_p\) is the particular solution to equation.
Linear DE with Constant Coefficients¶
Condition¶
- linear
- constant coefficient
- \(g^{(k)} \quad (k \in ℕ )\) contain finite number of terms.1
Solution¶
Trial particular solutions
\(g(x)\) | Form of \(y_p\) |
---|---|
\(\text{const}\qquad \qquad\) | \(A\) |
\(5x + 7\) | \(Ax + B\) |
\(3x^2 - 2\) | \(Ax^2 + Bx + C\) |
\(x^3 - x + 1\) | \(Ax^3 + Bx^2 + Cx + D\) |
\(\sin{4x}\) | \(A\cos{4x} + B\sin{4x}\) |
\(\cos{2x}\) | \(A\cos{2x} + B\sin{2x}\) |
\(e^{5x}\) | \(Ae^{5x}\) |
\((9x - 2)e^{5x}\) | \((Ax + B)\ e^{5x}\) |
\(x^2 e^{5x}\) | \((Ax^2 + Bx + C) \ e^{5x}\) |
\(x\ e^{3x}\sin{4x}\) | \((Ax + B)\ e^{3x}\ \cos{4x} + (Cx + D)\ e^{3x}\ \sin{4x}\) |
e.g.
Glitch¶
-
Condition 1 : particular cannot belong to complementary function.
e.g.
\[y'' -5y' +4y= 8e^x\]complementary function :
\[ y_c = c_1e^x + c_2e^{4x}\]\[ \begin{gather} \because Ae^{x} \in y_c \end{gather} \]therefore we guess the particular solution with an extra \(x\).
\[y_p = Axe^x\] -
Condition2 :
\[g(x), \ g'(x), \ g''(x), \ g'''(x), \dots\]can only contain infinite number of terms.
Any Linear DE¶
Variation of Parameters¶
Solution to 2nd Order
or in the form
Suppose the complementary function is
then assume particular solution as
and then we can get
in which
ref : Wronskian
Higher Order¶
similar to the way above.
-
\(y_p\) should be a linear combination of
\[g(x), \ g'(x), \ g''(x), \ g'''(x), \dots\]therefore, we won't get any redundant term. ↩