Skip to content

Higher Order DE

homogeneous Equations

Definition

an(x)dnydxn+an1(x)dn1ydxn1++a1(x)dydx+a0(x)y=g(x)

or be written as

an(x)Dn+an1(x)Dn1++a1(x)D+a0(x)y=g(x)
  • g(x)=0 homogeneous
  • g(x)0 non-homogeneous

General Solution (Complementary Function)

  • Theorem 4.1.5

    For an nth order homogeneous liner DE L(y)=0, if

    1. y1(t),y2(t),,yn(t) are the solution to L(y)=0
    2. y1(t),y2(t),,yn(t) are linearly independent
    3. Determinate whether they are liner independent : Wronskian.
  • Expression

    Any solution of the homogeneous liner DE can be expressed as

    y=c1y1+c2y2++cnyn
  • Any nth order homogeneous linear DE has n linearly independent solutions.

  • fundamental set of solutions

    y1(t),y2(t),,yn(t)
  • general solution (aka complementary function)

y=c1y1+c2y2++cnyn

2nd with an known solution

2nd order linear homogeneous DE with an known solution

a2(x)y+a1(x)y+a0(x)y=0

By virtue of solution below, we can get another solution and therefore get complementary function.

Conditions

  1. second order
  2. linear
  3. homogeneous
  4. one of the nontrivial solution y1(x) has been known

#### Standard Form

y+P(x)y+Q(x)y=0

Solution

(直接背!!!)

y2(x)=y1(x)eP(x)dxy12(x)dx

see proof. (TODO)


Linear DE with Constant Coefficients

Homogeneous linear DE with constant coefficients

any(n)(x)+an1y(n1)(x)++a1y(x)+a0y=0

Condition

  1. homogeneous
  2. linear
  3. constant coefficients

kernel concept

Suppose the solutions has the form of emx

Auxiliary Function

change y(n) into mn

anmn+an1mn1++a1m+a0=0

solve m.

Solution to 2nd Order

a2y(x)+a1y(x)+a0y(x)=0a2m2+a1m+a0=0
  • Case 1 : m1m2,m1,m2, (D > 0)

    m1,m2=a1±a124a2a02a2

    thus

    y=c1em1x+c2em2x

    if

    m1,m2=α ± β

    we can also write

    y=eαx(c1coshβx+c2sinhβx)


  • Case 2 m1=m2, (D = 0)

    y1=em1x

    y2 can be find by the method mentioned above.

    then we found that

    y2=x em1x


  • Case 3 m1m2, m1 and m2 are conjugate(共軛) and complex, (D < 0)

    m1=α+iβm2=αiβα=a12a2,β=4a2a0a122a2

    thus

    y=C1eαx+iβx+C2eαxiβx

    another form : proof

    y=eαx(c1cosβx+c2sinβx)

Solution to Higher Order

nth order ODE

p,q[1,n],andpq

  • Case 1 : mpmq 都是獨立解

  • Case 2 : 有重根 (在mp處重根 k 個)

    solution : empx,xempx,x2empx,,xk1empx

  • Case 3 : 有k對複數解

    solutions :

    eαxcos(βx),xeαxcos(βx),x2eαxcos(βx),,xk1eαxcos(βx)eαxsin(βx),xeαxsin(βx),x2eαxsin(βx),,xk1eαxsin(βx)

Cauchy-Euler Equation

Cauchy-Euler Equation is homogeneous linear DE in the form below

anxny(n)(x)+an1xn1y(n1)(x)++a1xy(x)+a0y(x)=g(x)

Kernel Concept

guess the solution has the form y(x)=xm

then we can change xk dkdxk to m!(mk)!


Solution to 2nd Order

a2x2y(x)+a1xy(x)+a0y=0
  • auxiliary function :

    a2m(m1)+a1m+a0=0a2m2+(a1a2)m+a0=0

than solve roots with

m=b±D2a


  • Case 1 : ( m1m2,m1,m2 )

    yc=c1xm1+c2xm2
  • Case 2 : ( m1=m2 )

    use the method of reduction of order

    y2(x)=y1(x)eP(x)dxy12(x)dx
    y1(x)=xm1
    y2(x)=xm1ln|x|

    直接背結論

  • Case 3 : ( D<0 )

    m1=α+iβ,m2=αiβ

    直接背

    yc=xα[c1cos(βlnx)+c2sin(βlnx)]

Solution to Higher Order

  • Case 1 : 皆唯一解

    xmp
  • Case 2 : 在mp處有 k 個重根

    xm0,xm0lnx,xm0(lnx)2,,xm0(lnx)k1
  • Case 3 : 有一對複數根

    xαcos(βlnx),xαsin(βlnx)
  • Case 4 : 有 k 對複數解

    xαcos(βlnx),xαcos(βlnx)lnx ,, xαcos(βlnx)(lnx)k1xαsin(βlnx),xαsin(βlnx)lnx ,, xαsin(βlnx)(lnx)k1

Non-homogeneous Equations

Concept

we can solve any non-homogeneous equations by

y=yc+yp

in which yc is the complementary function and yp is the particular solution to equation.


Linear DE with Constant Coefficients

Condition

  1. linear
  2. constant coefficient
  3. g(k)(k) contain finite number of terms.1

Solution

Trial particular solutions

g(x) Form of yp
const A
5x+7 Ax+B
3x22 Ax2+Bx+C
x3x+1 Ax3+Bx2+Cx+D
sin4x Acos4x+Bsin4x
cos2x Acos2x+Bsin2x
e5x Ae5x
(9x2)e5x (Ax+B) e5x
x2e5x (Ax2+Bx+C) e5x
x e3xsin4x (Ax+B) e3x cos4x+(Cx+D) e3x sin4x

e.g.

g(x)=e2x+xe3x
yp1=A e2xyp2=(Bx+C) e3x
yp=yp1+yp2=A e2x+(Bx+C) e3x

Glitch

  • Condition 1 : particular cannot belong to complementary function.

    e.g.

    y5y+4y=8ex

    complementary function :

    yc=c1ex+c2e4x
    Aexyc

    therefore we guess the particular solution with an extra x.

    yp=Axex
  • Condition2 :

    g(x), g(x), g(x), g(x),

    can only contain infinite number of terms.

Any Linear DE

an(x)y(n)(x)+an1(x)y(n1)++a1(x)y(x)+a0(x)y=g(x)

Variation of Parameters

Solution to 2nd Order

a2(x)y(x)+a1(x)y(x)+a0(x)y(x)=g(x)

or in the form

y(x)+P(x)y+Q(x)y=f(x)

Suppose the complementary function is

c1y1(x)+c2y2(x)

then assume particular solution as

yp=u1(x) y1(x)+u2(x) y2(x)

and then we can get

{y1u1+y2u2=0y1u1+y2u2=f(x)
u1=W1Wu1=u1dxu2=W2Wu2=u2dx

in which

W=Wronskian=|y1y2y1y2|W1=|0y2f(x)y2|W2=|y10y1f(x)|

ref : Wronskian

Higher Order

similar to the way above.


  1. yp should be a linear combination of

    g(x), g(x), g(x), g(x),

    therefore, we won't get any redundant term.