Skip to content

Laplace Transform

Definition

\[F(s) = L\big\{f(t)\big\} = \int_{0}^{\infty}{e^{-st}f(t)\ dt} \]

The Laplace Transforms of Basic Functions

\(\qquad f(t)\qquad\) \(\qquad F(s)\qquad\)
\(1\) \(1/s\)
\(t^n\) \(\frac{n!}{s^{n+1}}\)
\(\exp{(at)}\) \(\frac{1}{s-a}\)
\(t^ne^{at}\) \(\frac{n!}{(s-a)^{n+1}}\)
\(\sin{(kt)}\) \(\frac{k}{s^2 + k^2}\)
\(\cos{(kt)}\) \(\frac{s}{s^2+k^2}\)
\(\sinh{(kt)}\) \(\frac{k}{s^2-k^2}\)
\(\cosh{(kt)}\) \(\frac{s}{s^2-k^2}\)

Constraints

  • constraint 1 For a function \(f(t)\), \(\exists\) constant \(c\), \(M > 0\), and \(T>0\) s.t.

    \[|f(t)| \leq M\ e^{ct}, \ \forall \ t > T \]

    \(\rightarrow f(t)\) 不能跑得比 \(\exp {(ct)}\)

  • constraint 2

    \(f(t)\) should be piecewise continuous on \([0, \infty)\)

    \(\rightarrow\ \forall \ t \in [0, \infty)\), \(\quad f(t)\) 為 discontinuous 的點有限

note : these constraints are sufficient conditions


五大定理

Five Theorem

Transforms of Derivatives

\[ \begin{align} L\big\{f'(t)\big\} &= \int_0^{\infty}{e^{-st}\ f'(t)\ dt} = \Bigg[e^{-st}\ f(t)\Bigg]^{\infty}_0 + s\ \int_0^{\infty}{e^{-st}\ f(t)\ dt} \\\\ &=sL\big\{f(t)\big\} - f(0) \\\\\\ L\big\{f''(t)\big\} &= s^2\ F(s)-sf(0)-f'(0) \\\\ L\big\{f'''(t)\big\} &= s^3F(s) - s^2f(0)-sf'(0)-f''(0) \\\\ L\big\{f^{(n)}(t)\big\} &= s^nF(s)-s^{n-1}f(0) - s^{n-2}f'(0)-\dots -sf^{(n-2)}-f^{(n-1)}(0) \end{align} \]

First Translation Theorem

translation for \(s\)

\[ L\big\{e^{at}\ f(t)\big\}=F(s-a) \]

proof :

\[ \begin{align} L\big\{e^{at}\ f(t)\big\}&=\int_0^{\infty}{e^{-st}\ e^{at}\ f(t)\ dt} = \int_0^{\infty}{e^{-(s-a)t}\ f(t)\ dt} \\\\ &= F(s-a) \end{align} \]

Second Translation Theorem

translation for \(t\)

\[ L\big\{f(t-a)\cdot u(t-a)\big\} = e^{-as}\ F(s) \]

or

\[ L\big\{g(t)\ u(t-a)\big\}=e^{-as}\ L\big\{g(t+a)\big\} \]

in which \(u(t)\) is an unit step function.

proof :

\[ \begin{align} L\big\{f(t-a)\ u(t-a)\big\} &= \int_0^{\infty}{e^{-st}\ f(t-a)\ u(t-a)\ dt}\\\\ &=\int_a^{\infty}{e^{-st}\ f(t-a)\ dt} \qquad (\text{let }t_1=t-a)\\\\ &= \int_0^{\infty}{e^{-s(t_1+a)}\ f(t_1)\ dt_1} = e^{-as}\ F(s) \end{align} \]

Derivatives of Transforms

\[ L\big\{t^n\ f(t)\big\} = (-1)^n\ \frac{d^n}{ds^n}F(s) \]

Convolution

Definition :

\[ \begin{gather} f(t)*g(t)=\int_{-\infty}^{\infty}{f(\tau)\ g(t-\tau)\ d\tau} \end{gather} \]

When \(f(t)=0\) for \(t<0\) and \(g(t)=0\) for \(t<0\)

We have the same definition as below.

\[ \begin{gather} f(t)*g(t)=\int_0^t{f(\tau)\ g(t-\tau)\ d\tau} \end{gather} \]

Convolution Theorem

\[ L\big\{f(t)*g(t)\big\}=F(s)\ G(s) \]

Integration

from theorem above

\[ L\bigg\{\int_0^t{f(\tau)\ d\tau}\bigg\}=L\big\{f(t)*1\big\}=\frac{F(s)}{s} \]

Transform of a Periodic Function

When

\[f(t+T)=f(t)\]

then

\[ L\big\{f(t)\big\}=\frac{1}{1-e^{-sT}}\int_0^T{e^{-st}\ f(t)\ dt} \]
\[ \begin{align} \\\\ \frac{1}{1-e^{-sT}} \end{align} \]

來自無窮等比級數

Dirac Delta Function

\[ \delta(t-t_0)= \Bigg\{ \begin{eqnarray} \infty \quad \text{for}\ t=t_0\\ 0 \quad \text{for}\ t\neq t_0 \end{eqnarray} \]

Integration

\[\int_{-\infty}^{\infty}{\delta (t-t_0)\ dt}=1\]

Sifting

\[ \int_p^q{f(t)\ \delta (t-t_0)\ dt}=f(t_0) \]
\[t_0 \in [p,q]\]

Laplace Transform

\[ L\big\{\delta (t-t_0)\big\}=e^{-t_0s } \]
\[ \text{when}\ t_0 >0 \]

proof :

\[ \begin{align} \because \ \delta(t-t_0)&=u'(t-t_0)\\\\ \therefore \ L\big\{\delta(t-t_0)\big\}&=sL\big\{u(t-t_0)\big\}-u(0)\\\\ \end{align} \]

due to second translation theorem, we have

\[ \begin{align} L\big\{\delta(t-t_0)\big\}=\frac{e^{-t_0s}}{s}\ s=e^{-t_0s} \end{align} \]