Skip to content

Special Functions

Legendre Polynomials

\[ \begin{gather} (1-x^2)y''-2xy'+\lambda y=0 \\\\ (1-x^2)y'' - 2xy' + n(n+1)y=0 \\\\ \big[(1-x^2)y'\big]+\lambda y = 0 \end{gather} \]

solve the equation with \(y = \sum a_m x^m\), we can get the conclusion that

\[ \begin{gather} \lambda_{n} = n(n+1), \qquad \text{for } n = 0, 1,2 , \dots \\\\ a_{m+2} = \frac{m(m+1)-\lambda_{n}}{(m+2)(m+1)}a_m \end{gather} \]

thus \(a_{n+2} = a_{n+4} = \dots = 0\)


Normalization

  • Let the polynomial \(P_0(x)=1\), \(P_1(x) = x\)

  • Recurrence relation : (背)

\[\begin{align} (n+1)P_{n+1} = (2n+1)x P_n - nP_{n-1} \end{align} \]

Fourier-Legendre Expansion

  • \(f(x)\) is defined for \(-1 < x< 1\)
\[ \begin{gather} f(x) = \sum_{n= 0}^{\infty}{c_{n}P_{n}(x)} \\\\ c_{n} = \frac{(f, P_{n})}{(P_{n}, P_{n})} = \frac{\int_{-1}^{1}{f(x)}P_{n}(x)dx}{\int_{-1}^{1}{P^{2}_{n}(x)dx}} \\\\ \int_{-1}^{1}{P^{2}_{n}(x)dx} = \frac{2}{2n+1} \end{gather} \]

Bessel Functions

  • definition
\[ \begin{align} x^2y'' + xy' + (x^2 - \nu^2)y = 0 \end{align} \]
  • solution ( for \(J_\nu\) and \(J_{-\nu}\) are independent)
    • \(2\nu \notin ℕ\)
    • \(2\nu\) is odd positive integer
\[ \begin{gather} y(x) = c_1 J_\nu(x) + c_2J_{-\nu}(x) \end{gather} \]
  • solution ( for \(J_\nu\) and \(J_{-\nu}\) are not independent)
    • \(2\nu\) is even positive integer
\[ \begin{gather} y(x) = c_1 J_\nu(x) + c_2Y_\nu(x) \end{gather} \]
  • \(J_\nu\) is called a Bessel function of the 1st kind of order \(\nu\)
\[ \begin{gather} J_\nu = \sum_{n=0}^{\infty}{\frac{(-1)^n}{2^{n+\nu}n!\ \Gamma(n+\nu+1)}x^{2n+\nu}} \end{gather} \]

  • \(Y_\nu \rightarrow Y_{0}(0) = -\infty\)

Recurrence Relations

\[ \begin{gather} \frac{d}{dx}(x^\nu J_\nu) = x^\nu J_{\nu-1} \\\\ \frac{d}{dx}(x^{-\nu}J_\nu)=-x^{-\nu}J_{\nu+1} \end{gather} \]