Skip to content

Sturm-Liouville problem

  • aka S.L.P

  • definition

(ry)+(q+λp)y=0p>0 and r>0on (a,b)
  • eigenvalue λ

    • S.L.P has a nontrivial solution for λ, then the λ is an eigenvalue
  • eigenfunction

    • the solution for the corresponding S.L.P is called eigenfunction

## Regular SLP

  • boundary condition
A1y(a)+A2y(a)=0B1y(b)+B2y(b)=0

in which,

A12+A220B12+B220

Periodic SLP

  • define on [a,b]
  • r(a)=r(b)
  • y(a)=y(b), y(a)=y(b)

Singular SLP

  • r(a)=0 , or r(b)=0, (or both)

SL Theorem

  1. if ϕ is an eigenfunction, then c ϕ is also an eigenfunction c
  2. λnλm
  3. let SLP define on (a,b), then
(ϕn,ϕm)=abp(x) ϕn(x) ϕm(x) dx=0

in which p is weighted function

Eigenfunction expansion

With series solution, we can write any function in

f(x)=n=0anxn

likewise, we can also write

f(x)=m=0amym(x)

in which y is an eigenfunction, multiply this equation by p(x)yn

p(x) f(x) yn=m=0am yn ym

and integrate to get

(f,ym)=n=1an(yn,ym)=am (ym,ym)am=(f,ym)(ym,ym)=(f,ym)||ym||2