Sturm-Liouville problem¶
-
aka S.L.P
-
definition
\[
\begin{gather}
(ry')' + (q+\lambda p)y = 0
\\\\
p>0 \text{ and } r>0 \quad \text{on } (a, b)
\end{gather}
\]
-
eigenvalue \(\lambda\)
- S.L.P has a nontrivial solution for \(\lambda\), then the \(\lambda\) is an eigenvalue
-
eigenfunction
- the solution for the corresponding S.L.P is called eigenfunction
## Regular SLP
- boundary condition
\[
\begin{align}
&A_1 y(a) + A_2 y'(a) = 0
\\\\
&B_1 y(b) + B_2 y'(b) = 0
\end{align}
\]
in which,
\[
\begin{align}
&A_1^2 +A_2^2 \neq 0
\\\\
&B_1^2 + B_2^2 \neq 0
\end{align}
\]
Periodic SLP¶
- define on \([a, b]\)
- \(r(a) = r(b)\)
- \(y(a) = y(b)\), \(y'(a) = y'(b)\)
Singular SLP¶
- \(r(a) = 0\) , or \(r(b)=0\), (or both)
SL Theorem¶
- if \(\phi\) is an eigenfunction, then \(c\ \phi\) is also an eigenfunction \(\forall c \in ℝ\)
- \(\lambda_n \neq \lambda_m\)
- let SLP define on \((a, b)\), then
\[
\begin{gather}
(\phi_n, \phi_m)=\int_a^b{p(x)\ \phi_n(x)\ \phi_m(x)\ dx} = 0
\end{gather}
\]
in which \(p\) is weighted function
Eigenfunction expansion¶
With series solution, we can write any function in
\[
\begin{align}
f(x) = \sum_{n =0}^{\infty}{a_n x^n}
\end{align}
\]
likewise, we can also write
\[
\begin{align}
f(x) = \sum_{m=0}^{\infty}{a_m y_m(x)}
\end{align}
\]
in which \(y\) is an eigenfunction, multiply this equation by \(p(x)y_{n}\)
\[
\begin{gather}
p(x)\ f(x)\ y_{n} = \sum_{m=0}^{\infty}{a_{m}\ y_{n}\ y_{m}}
\end{gather}
\]
and integrate to get
\[
\begin{align}
(f, y_m) &= \sum_{n=1}^{\infty}{a_n (y_n, y_m)}
\\\\
&=a_m\ (y_m, y_m)
\\\\
a_m &= \frac{(f, y_m)}{(y_m, y_m)}=\frac{(f, y_m)}{||y_m||^2}
\end{align}
\]