Skip to content

Wave Equation

1-D Wave Equation

\[ \begin{gather} y(x, t) \\\\ \frac{\partial^2 y}{\partial t^{2}}=c^{2}\frac{\partial^2 y}{\partial x^{2}} \end{gather} \]

Separate Variable Method

  • 前提

wave equation is on a closed interval \([0, L]\)

assume that

\[ \begin{gather} y(x, t) = X(x)T(t) \end{gather} \]

then

\[ \begin{gather} X_{n}(x) = \sin{(\frac{n\pi x}{p})} \\\\ T_{n}(x) = a_{n}\cos{(\frac{n\pi c}{p}t)}+b_{n}\sin{(\frac{n\pi c}{p}t)} \end{gather} \]

finally we have

\[ \begin{gather} y(x, t) = \sum_{n=1}^{\infty}{y_{n}(x,t)} = \sum_{n =1}^{\infty}{X_{n}(x)\ T_n(t)} \end{gather} \]

zero initial velocity

\[y_{t}(x, 0) = 0\]

let \(f(x)\) be an initial displacement function

\[ \begin{gather} f(x) = y(x, 0) \end{gather} \]

then we can get

\[ \begin{gather} T_{n}(t) = a_{n} \cos{(\frac{n\pi c }{p}t)} \end{gather} \]

and finally,

\[ \begin{gather} y(x, t) = \sum_{n=1}^{\infty}{a_{n}\sin(\frac{n\pi x}{p})\cos{\frac{n\pi c}{p}t}} \end{gather} \]
  • notice that p is a half of period (\([-p, p]\))

in which \(a_{n}\) is the sine Fourier series coefficient of \(f(x) = y(x, 0) = \sum{a_{n}\sin(\frac{n\pi x}{p})}\)

\[ \begin{gather} a_{n} = \frac{2}{p}\int_{0}^{p}{f(x)\sin{(\frac{n \pi x}{p})}dx} \end{gather} \]

zero initial displacement

\[y(x, 0) = 0\]

let \(g(x)\) be the initial velocity function

\[ \begin{gather} g(x) = y_{t}(x, 0) \end{gather} \]

then we can get

\[ \begin{gather} T_{n}(t) = b_{n}\sin{(\frac{n\pi c}{p}t)} \end{gather} \]

in which \(\frac{n\pi c}{p}b_{n}\) is the Fourier sine series coefficient of \(g(x)\)

\[ \begin{gather} \frac{n \pi c }{p}b_{n} = \frac{2}{p}\int_{0}^{p}{g(x)\sin{(\frac{n \pi x}{p})}dx} \end{gather} \]

finally,

\[ \begin{align} y(x, t) &= \sum_{n=1}^{\infty}{y_{n}(x, t) } \\\\ &=\sum_{n=1}^{\infty}{b_{n}\sin{(\frac{n\pi x}{p})}\sin{(\frac{n\pi c t}{p})}} \end{align} \]

nonzero initial velocity and displacement

in the situation, assume

\[y(x, t) = y_{1}(x, t) + y_{2}(x, t)\]

which \(y_{1}(x, t)\) assume zero initial velocity, and that \(y_{2}(x, t)\) assume zero initial displacement

and that is same as what we have discussed above.


with External Force

consider wave equation in this form

\[ \begin{gather} \frac{\partial^2 y}{\partial t^{2}} = \frac{\partial^2 y}{\partial x^{2}}+Ax \end{gather} \]

\(y(x, t)\) can not be separated.

so we let

\[ \begin{gather} y(x, t) = Y(x, t) + \phi(x) \end{gather} \]

assume that \(Y(x, t)\) can be separated, which means we can get the answer with the method above.

代入 \(y(x, t)\), we can get

\[ \begin{gather} \frac{\partial^2 Y}{\partial t^{2}} = \frac{\partial^2 Y}{\partial t^{2}}+\frac{\partial^2 \phi}{\partial t^{2}}+Ax \end{gather} \]

therefore

\[ \begin{gather} \phi''(x) + Ax =0 \end{gather} \]

Infinite Medium

for the wave equations which are define in \((-\infty, \infty)\)

as usual, denote the initial displacement as \(f(x)\) and the initial velocity as \(g(x)\)

first we have to know that the eigenvalue only exists when \(\omega \geq 0\)

  • solve two ODE we can get
\[ \begin{gather} X_{\omega}(x) = a_{\omega}\cos{(\omega x)}+ b_{\omega }\sin{(\omega x)} \\\\ T_{\omega}(t) = A_{\omega}\cos{(\omega ct)} + B_{\omega}\sin{(\omega ct)} \end{gather} \]

then the most important thing is that

\[ \begin{gather} y(x, t) = \int_{0}^{\infty}{y_{\omega}(x, t) \ d\omega} = \int_{0}^{\infty}{X_{\omega}(x)T_{\omega}(t)\ d\omega } \end{gather} \]

Semi-infinite Medium

for the wave equations which are define in \([0, \infty)\), thus

\[ \begin{gather} y(0, t) = 0 \text{ for } t > 0 \end{gather} \]

as usual, denote the initial displacement as \(f(x)\) and the initial velocity as \(g(x)\)

\[ \begin{gather} X(x) = a\cos{(\omega x)}+ b\sin{(\omega x)} \\\\ T(t) = c_{\omega}\cos{(\omega ct)} + d_{\omega}\sin{(\omega ct)} \end{gather} \]

%% since \(X(0) = 0\), thus

\[ \begin{gather} X(x) = b\sin{(\omega x)} \end{gather} \]

%%


Finite V.S. Infinite Medium

Finite Infinite
Fourier sine series Fourier integral
\(\frac{n\pi}{p}\) \(\omega\)
\(X(x)\) \(\sin{(\frac{n\pi x}{p})}\) \(a\cos{(\omega x)}+b\sin{(\omega x)}\)
\(T(t)\) when \(v(0)=0\) \(a_{n}\cos{(\frac{n\pi c}{p}t)}\) \(A_{\omega}\cos{(\omega ct)}\)
\(T(t)\) when \(d(0)=0\) \(b_{n}\sin{(\frac{n\pi c}{p}t)}\) \(B_{\omega}\sin{(\omega c t)}\)

Characteristics and d'Alembert's Solution

one special solution for these condition

\[ \begin{gather} u_{tt} = c^{2}u_{xx} \quad -\infty < x < \infty, t > 0 \\\\ u(x, 0) = f(x) \quad -\infty < x < \infty \\\\ u_{t}(x, 0) = g(x) \quad -\infty < x < \infty \end{gather} \]

\[ \begin{gather} u(x, t) = \frac{1}{2}\big[f(x-ct) + f(x+ct)\big] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(k) \ dk \end{gather} \]

Forced Wave Motion

\[ \begin{gather} \text{for }\quad -\infty < x < \infty,\quad t > 0 \\\\ u_{tt} = c^{2}u_{xx}+F(x, t) \\\\ u(x, 0) = f(x) \\\\ u_{t}(x, 0) = g(x) \end{gather} \]
  • solution
\[ \begin{gather} u(x, t) = \frac{1}{2} \big[f(x-ct)+f(x+ct)\big]+\frac{1}{2c}\int_{x-ct}^{x+ct}{g(x)\ dx} + \frac{1}{2c}\iint_{\Delta}F(x, t)\ dx\ dt \end{gather} \]

\(\Delta\) is characteristics triangle

\[ \begin{gather} x-ct = k_{1} \\\\ x+ct = k_{2} \end{gather} \]

\(k_{1}\), \(k_{2}\) can be any real constants.


2-D Wave Equation

\[ \begin{gather} \frac{\partial z}{\partial t^{2}}=c^{2} \left(\frac{\partial^2 z}{\partial x^{2}}+\frac{\partial^2 z}{\partial y^{2}}\right) \end{gather} \]