Proof2

y=C1eαx+iβx+C2eαxiβx=eαx(C1eiβx+C2eiβx)=eαx(C1(cosβx+isinβx)+C2(cosβxisinβx))=eαx(c1cosβx+c2sinβx)(c1=C1+C2,c2=C1C2)

note :

eix=cosx+isinx sin(x)=eixeix2icos(x)=eix+eix2