Proof2 y=C1eαx+iβx+C2eαx−iβx=eαx(C1eiβx+C2e−iβx)=eαx(C1(cosβx+isinβx)+C2(cosβx−isinβx))=eαx(c1cosβx+c2sinβx)(c1=C1+C2,c2=C1−C2) note : eix=cosx+isinx sin(x)=eix−e−ix2icos(x)=eix+e−ix2