Skip to content

Distributions

Binomial and Negative Binomial

Binomial Distribution

  • distribution of number of success r given number of trails n
P(X=r)=(nr)pr(1p)nr

Negative Binomial Distribution

  • distribution of number of trails n given number of success r
    • namely, distribution of number of failures k given number of success r
P(X=n)=(n1r1)pr(1p)nr

Geometric Distribution

  • number of trails n until success
P(X=n)=p(1p)n1

Generation Method

  • CMF
F(i)=n=1ipqn1=p1qi11q=1qi1

let

U=G(i)=1F(i)=qi1

thus

i1=logqUG1(U)=logqU+1

Poisson Distribution

  • Pois(λ)
  • Considering events occur with rate r, with time interval t, there would be average number of events rt per interval.
    • say that λ=rt, expected rate of occurrences
    • Split the time interval t in to N pieces and make the sub-interval t very small(i.e. N very large).
    • t=t/N where Nthen rt1
    • if rt1, it approximates to do one Bernoulli trails in each time interval t.
    • Pois(λ)B(n=N,p=rt=λ/N)B(n,p0)
  • EXPois[X]=λ=np=rt
  • XPois(λ), indicates X is the number of events occurs in unit time interval (and the event rate is λ).
P{X=i}=(ni)pi(1p)ni=(\cancelni)λi\cancelni(1p)ni=λii!(1p)ni=λii!(ep)n=λii!eλ

hint

limx0ex=e0(1+x1!+x22!)1+x

Generation Method

  1. Generate several exponential random variable EiExp(λ)
  2. until E1+E2++Ei1>E1+E2++Ei1

Exponential Distribution

  • time between events in Poisson process
  • continuous analogue of the geometric distribution.

  • CDF

    • take YPois(λ)
    • split unit time interval to 1/N, where N is large
    • then p=λ/N
P(Xk)=(1p)kN=ekNp=eλkF(x)=1P(Xx)=1eλx
  • PDF
f(x)=F(x)=eλx

Generation Method

Since,

F(x)=1eλxF1(U)=ln(1U)λ

identically,

F1(U)=F1(1U)=1λlnU

Beta Distribution