Skip to content

EM Wave

EM Wave Equations

  • in free space

by Maxwell's equations, we have

\[ \begin{align} \nabla \times \vec E &= - \mu_0\frac{\partial \vec H}{\partial t}\tag 1 \\\\ \nabla \times \vec H &= \varepsilon_0 \frac{\partial \vec E}{\partial t} \\\\ \end{align} \]

^equ-1

\[ \begin{align} \nabla^{2}\vec E&=\nabla\left(\nabla \cdot \vec E\right)-\nabla \times \nabla \times \vec E \\\\ &=0-\left(-\mu_0\frac{\partial }{\partial t}\left(\nabla \times \vec H\right)\right) \\\\ &=\mu_0\varepsilon_0\frac{\partial^{2} \vec E}{\partial t^{2}} \end{align} \]

and similar for \(\nabla ^{2}\vec H\).

We can now have the wave equations

\[ \left\{ \begin{align} \nabla ^{2}\vec E&=\mu_0\varepsilon_0\frac{\partial^{2} \vec E}{\partial t^{2}} \\\\ \nabla^{2}\vec H &= \mu_0\varepsilon_0\frac{\partial^{2} \vec H}{\partial t^{2}} \end{align}\right. \]

compare to standard form of wave equation

\[ \begin{gather} \frac{\partial ^{2}\vec U}{\partial t^{2}}=c^{2}\,\nabla ^{2} \vec U \end{gather} \]

we have

\[ \begin{gather} c=\frac{1}{\sqrt{\mu_0\varepsilon_0}} \end{gather} \]

General Solutions (Frequency Domain)

\[ \begin{gather} \nabla ^{2}\vec {E_s} - \gamma^{2}\vec {E_s} = 0 \\\\ \nabla ^{2}\vec {H_s} - \gamma^{2}\vec {H_s} = 0 \end{gather} \]

in which \(\gamma\) is propagation constant.

\[ \begin{gather} \gamma = \sqrt{j\omega\mu(\sigma + j\omega \varepsilon)} \end{gather} \]

Thinking

  • Faraday's Law
\[ \begin{gather} \nabla \times \vec{E_s} = j\omega\mu \vec{H_s} \end{gather} \]
  • Ampere's Law
\[ \begin{gather} \nabla \times \vec{H_s} = \sigma \vec {E_s} + j\omega \varepsilon\vec{E_s} \end{gather} \]

General Solutions (Transmission Line)

Take the wave propagates through \(\hat {a_z}\) direction, then

\[ \left\{ \begin{align} \vec E= E_x^{+}(z-ut) \, \hat{a_x} + E^{-}_x(z+ut)\,\hat{a_x} \\\\ \vec H= H_y^{+}(z-ut) \, \hat{a_y} + H^{-}_y(z+ut)\,\hat{a_y} \end{align}\right. \]

from \(\text{equation (a)}\) we have

\[ \begin{align} \mu_0\frac{\partial \vec H}{\partial t} &= - \nabla \times \vec E = -\frac{\partial \vec E}{\partial z} \\\\ &= -\bigg({E_x^{+}}'(z-ut) \, \hat{a_x} + {E^{-}_x}'(z+ut)\,\hat{a_x}\bigg) \\\\ \implies \vec H &= -\frac{1}{\mu_0}\int\left({E_x^{+}}'(z-ut) \, \hat{a_x} + {E^{-}_x}'(z+ut)\,\hat{a_x}\right)\,dt \\\\ &= \frac{1}{u\mu_0}\bigg({E_x^{+}}(z-ut) \, \hat{a_x} - {E^{-}_x}(z+ut)\,\hat{a_x}\bigg) \\\\ &= \frac{1}{\sqrt{\mu_0/\varepsilon_0}}\bigg({E_x^{+}}(z-ut) \, \hat{a_x} - {E^{-}_x}(z+ut)\,\hat{a_x}\bigg) \end{align} \]

Thus we can obtain the wave impedance in free space \(\eta_0\)

\[ \begin{gather} \eta_0 = \sqrt\frac{\mu_0}{\varepsilon_0} = \frac{E_x^{+}}{H_x^{+}}=-\frac{E_x^{-}}{H_x^{-}} \end{gather} \]

Power

  • Poynting Vector
\[ \begin{gather} \vec P = \vec E \times \vec H \qquad \text{W/m}^{2} \end{gather} \]
  • Instantaneous power across \(S\)
\[ \begin{gather} P(t)=\int_S \vec P \cdot d\vec S \end{gather} \]
  • complex Poynting vector
    not a phasor, but come up by phasors trickily.
    notice that complex Poynting vector is not function of \(t\). Since it is generated from phasors, it represents the concept of average.
\[ \begin{gather} \vec P_c=\frac{1}{2}\vec E_s\times\vec H_s^{*} =\frac{1}{2}\vec E_s^{*}\times\vec H_s \\\\ \vec P_{ave}=\text{Re}\left[\vec P_c\right]\qquad \text{W/m}^{2} \end{gather} \]

Loss Tangent

  • for lossless medium, \(\sigma = 0\).

  • propagation constant \(\gamma\)

\[ \begin{gather} \gamma = \sqrt{j\omega \mu(\sigma + j\omega\varepsilon)} \end{gather} \]
  • Loss Tangent
\[ \begin{gather} \tan\theta = \frac{J_{cs}}{J_{ds}} = \frac{|\sigma E_s|}{|j\omega\varepsilon E_s|} = \frac{\sigma}{\omega \varepsilon} \end{gather} \]
  • Loss Angle
\[ \begin{gather} \theta = \tan^{-1}{\frac{\sigma}{\omega\varepsilon}} \end{gather} \]
  • Skin Depth
\[ \begin{gather} \delta = \frac{1}{\alpha} \end{gather} \]

Wave Polarization

\[ \begin{gather} \vec E = E_x \,\hat{a_x} + E_y \,\hat{a_y} \\\\ = E_{ox}\cos{(\omega t - \beta z + \phi_x)} \, \hat{a_x} + E_{oy}\cos{(\omega t - \beta z + \phi_y)} \, \hat{a_y} \\\\ \Delta \phi = \phi_y - \phi_x \end{gather} \]

Linear Polarization

\[ \begin{align} \vec E &= E_x \,\hat{a_x} + E_y \,\hat{a_y} \\\\ &= E_1 \,\hat{a_1} + E_2 \,\hat{a_2} \, \end{align} \]
  • \(\Delta \phi = n\pi, \quad n\in Z^{+}\)
\[ \begin{gather} \frac{E_{y}}{E_{x}}= \frac{E_{oy}\cos{(\omega t - \beta z + \phi_x + \Delta \phi)}}{E_{ox}\cos{(\omega t - \beta z + \phi_x)}} = \frac{E_{oy}}{E_{ox}} \end{gather} \]
  • no necessarily perpendicular

Circular Polarization

  1. \(E_{ox} = E_{oy}\)
  2. \(\Delta \phi = (\frac{1}{2} + n)\pi\)
\[ \begin{gather} \frac{E_{y}}{E_{x}}= \frac{E_{oy}\cos{(\omega t - \beta z + \phi_x + \Delta \phi)}}{E_{ox}\cos{(\omega t - \beta z + \phi_x)}} = \pm\frac{E_{oy}}{E_{ox}} \,\tan{(\omega t - \beta z + \phi_x)} \end{gather} \]

thus,

\[ \begin{gather} \phi = \tan^{-1}{\frac{E_y}{E_x}}=\pm(\omega t - \beta z + \phi_x) \implies \text{circular} \end{gather} \]
  • necessarily perpendicular

Elliptical Polarization

  • if \(\Delta \phi > 0\), \(E_y\) leads \(E_x\), (left-handed)
  • if \(\Delta \phi < 0\), \(E_y\) lags \(E_x\), (right-handed)

Reflection and Transmission

Snell's Law

lossless

\[ \begin{gather} k_i \sin{\theta_i} = k_r \sin{\theta_r}=k_t\sin{\theta_t} \end{gather} \]

lossy

\[ \begin{gather} \gamma_i \sin{\theta_i} = \gamma_r \sin{\theta_r}=\gamma_t\sin{\theta_t} \end{gather} \]
True Angle of Refraction

Since \(\gamma\) is complex, \(\sin \theta_t\) and \(\sin \theta_r\) is basically complex as well.

Thus

\[ \begin{align} \vec \gamma_t \cdot \vec r &= \gamma_t \sin{\theta_t}\,x + \gamma_t \cos{\theta_t}\,z \\\\ &= \Re\big[ \gamma_t \sin{\theta_t}\big]x + \Re\big[ \gamma_t \cos{\theta_t}\big]z + j\bigg[ \Im\big[ \gamma_t \sin{\theta_t}\big]x + \Im\big[ \gamma_t \cos{\theta_t}\big]z \bigg] \end{align} \]
  • True angle of refraction \(\psi_\beta\)
\[ \begin{gather} \psi_\beta = \tan^{-1}{\frac{\Im\big[\gamma_t\sin\theta_t\big]}{\Im\big[\gamma_t\cos\theta_t\big]}} \end{gather} \]

Polarization

Parallel Polarization

  • \(E\) is parallel to surface formed by (\(k_i, k_r, k_t\))

at \(z=0\),

solve,

\[ \left\{ \begin{align} &E_{i0}\cos{\theta_i} + E_{r0}\cos{\theta_r} = E_{t0}\cos{\theta_t} \\\\ &H_{i0} - H_{r0} = H_{t0} \end{align}\right. \]

then we have

\[ \begin{gather} \Gamma_{\parallel}=\frac{E_{r0}}{E_{i0}}=\frac{\eta_2\cos{\theta_t}-\eta_1\cos{\theta_i}}{\eta_2\cos{\theta_t}+\eta_1\cos{\theta_i}} \\\\ \tau_{\parallel}=\frac{E_{t0}}{E_{i0}}=\frac{2\eta_2\cos{\theta_i}}{\eta_2\cos{\theta_t}+\eta_1\cos{\theta_i}} \end{gather} \]

Perpendicular Polarization

at \(z=0\),

solve,

\[ \left\{ \begin{align} &-H_{i0}\cos{\theta_i} + H_{r0}\cos{\theta_r} = -H_{t0}\cos{\theta_t} \\\\ &E_{i0} + E_{r0} = E_{t0} \end{align}\right. \]

then we have

\[ \begin{gather} \Gamma_{\bot}=\frac{E_{r0}}{E_{i0}}=\frac{\eta_2\cos{\theta_i}-\eta_1\cos{\theta_t}}{\eta_2\cos{\theta_i}+\eta_1\cos{\theta_t}} \\\\ \tau_{\bot}=\frac{E_{t0}}{E_{i0}}=\frac{2\eta_2\cos{\theta_i}}{\eta_2\cos{\theta_i}+\eta_1\cos{\theta_t}} \end{gather} \]

Brewster Angle

  • Denote as \(\theta_{B\parallel}\)

  • a special \(\theta_i\) that make no reflection.

For nonmagnetic medium (\(\mu_r = 1\)), only exists at parallel polarization.

\[ \begin{gather} \Gamma_{\parallel} = \frac{\eta_2\cos{\theta_t}- \eta_1\cos{\theta_i}}{\eta_2\cos{\theta_t}+ \eta_1\cos{\theta_i}} = 0 \\\\ \implies \eta_2 \cos{\theta_t} = \eta_1\cos{\theta_{B\parallel}} \end{gather} \]
\[ \begin{gather} \\ \eta_2^{2} \cos^{2}{\theta_t} = \eta^{2}_1 \cos^{2}{\theta_{B\parallel}} \\\\ \frac{\mu_2}{\varepsilon_2}\left(1-\frac{\mu_1\varepsilon_1}{\mu_2\varepsilon_2}\sin^{2}{\theta_{B\parallel}}\right) = \frac{\mu_1}{\varepsilon_1}\left(1-\sin^{2}{\theta_{B\parallel}}\right) \end{gather} \]

for non-magnetic medium \(\mu_1 = \mu_2 = \mu_0\)

\[ \begin{align} \\ \implies \sin^{2}{\theta_{B\parallel}} &= \frac{\displaystyle{ \frac{\mu_2}{\varepsilon_2}-\frac{\mu_1}{\varepsilon_1}}} {\displaystyle { \frac{\mu_1\varepsilon_1}{\mu_2\varepsilon_2}\frac{\mu_2}{\varepsilon_2} -\frac{\mu_1}{\varepsilon_1} }} \\\\ &= \frac{\displaystyle{ \frac{\mu_0}{\varepsilon_2}-\frac{\mu_0}{\varepsilon_1}}} {\displaystyle { \frac{\varepsilon_1}{\varepsilon_2}\frac{\mu_0}{\varepsilon_2} -\frac{\mu_0}{\varepsilon_1} }} \\\\ &= \frac{\displaystyle{ \varepsilon_1- \varepsilon_2}} {\displaystyle { \frac{\varepsilon_1^{2}}{\varepsilon_2}-\varepsilon_2 }} \\\\ &= \frac{\displaystyle{ \varepsilon_1- \varepsilon_2}} {\displaystyle { \frac{1}{\varepsilon_2}(\varepsilon_1^{2}-\varepsilon_2^{2}) }} \\\\ &= \boxed{ \frac{\varepsilon_2} {\displaystyle { \varepsilon_1 + \varepsilon_2 }}} \end{align} \]

then,

\[ \begin{gather} \tan{\theta_{B\parallel}} = \sqrt\frac{\varepsilon_2}{\varepsilon_1} \end{gather} \]

Normal Incidence

Power

  • incident power
\[ \begin{gather} P_i = \frac{1}{2}\Re\bigg[E_{i0}H_{i0}^{*}\bigg] =\frac{1}{2}\frac{|{E_{i0}}|^{2}}{\Re\big[\eta_1^{*}\big]} \end{gather} \]
  • reflected power
\[ \begin{align} P_r &= -\frac{1}{2}\Re\bigg[E_{r0}H_{r0}^{*}\bigg] \\\\ &=-\frac{1}{2}\frac{|\Gamma {E_{i0}}|^{2}}{\Re\big[\eta_1^{*}\big]} \\\\ &= - |\Gamma|^{2}P_i \end{align} \]


\[ \begin{gather} E_{ts} = E_{t0}e^{-\gamma_2 z}=E_{i0}(1+\Gamma)e^{-\gamma_2 z} \\\\ H_{ts} = H_{t0}e^{-\gamma_2 z} = \frac{E_{t0}}{\eta_2}e^{-\gamma_2 z} = \frac{E_{i0}(1+\Gamma)}{\eta_2}e^{-\gamma_2 z} \\\\ = \frac{H_{i0}\,\eta_1(1+\Gamma)}{\eta_2}e^{-\gamma_2 z} = H_{i0}(1-\Gamma)e^{-\gamma_2 z} \end{gather} \]

then,

\[ \begin{align} P_t &= \frac{1}{2}\Re\bigg[E_{t0}H_{t0}^{*}\bigg] \\\\ &= P_i\,(1+\Gamma)(1-\Gamma^{*}) \\\\ &\overset{\alpha=0}{=}P_i(1-|\Gamma|^{2}) \end{align} \]

Note

compare to \(\text{equation (6)}\)

\[ \begin{align} P_i &\leftrightarrow P^{+} \\\\ P_r &\leftrightarrow P^{-} \\\\ P_t &\leftrightarrow P \\\\ P_i+P_r=P_t &\leftrightarrow P^{+}+P^{-}=P \end{align} \]