Skip to content

EM Wave

EM Wave Equations

  • in free space

by Maxwell's equations, we have

(1)×E=μ0Ht×H=ε0Et

^equ-1

2E=(E)××E=0(μ0t(×H))=μ0ε02Et2

and similar for 2H.

We can now have the wave equations

{2E=μ0ε02Et22H=μ0ε02Ht2

compare to standard form of wave equation

2Ut2=c22U

we have

c=1μ0ε0

General Solutions (Frequency Domain)

2Esγ2Es=02Hsγ2Hs=0

in which γ is propagation constant.

γ=jωμ(σ+jωε)

Thinking

  • Faraday's Law
×Es=jωμHs
  • Ampere's Law
×Hs=σEs+jωεEs

General Solutions (Transmission Line)

Take the wave propagates through az^ direction, then

{E=Ex+(zut)ax^+Ex(z+ut)ax^H=Hy+(zut)ay^+Hy(z+ut)ay^

from equation (a) we have

μ0Ht=×E=Ez=(Ex+(zut)ax^+Ex(z+ut)ax^)H=1μ0(Ex+(zut)ax^+Ex(z+ut)ax^)dt=1uμ0(Ex+(zut)ax^Ex(z+ut)ax^)=1μ0/ε0(Ex+(zut)ax^Ex(z+ut)ax^)

Thus we can obtain the wave impedance in free space η0

η0=μ0ε0=Ex+Hx+=ExHx

Power

  • Poynting Vector
P=E×HW/m2
  • Instantaneous power across S
P(t)=SPdS
  • complex Poynting vector
    not a phasor, but come up by phasors trickily.
    notice that complex Poynting vector is not function of t. Since it is generated from phasors, it represents the concept of average.
Pc=12Es×Hs=12Es×HsPave=Re[Pc]W/m2

Loss Tangent

  • for lossless medium, σ=0.

  • propagation constant γ

γ=jωμ(σ+jωε)
  • Loss Tangent
tanθ=JcsJds=|σEs||jωεEs|=σωε
  • Loss Angle
θ=tan1σωε
  • Skin Depth
δ=1α

Wave Polarization

E=Exax^+Eyay^=Eoxcos(ωtβz+ϕx)ax^+Eoycos(ωtβz+ϕy)ay^Δϕ=ϕyϕx

Linear Polarization

E=Exax^+Eyay^=E1a1^+E2a2^
  • Δϕ=nπ,nZ+
EyEx=Eoycos(ωtβz+ϕx+Δϕ)Eoxcos(ωtβz+ϕx)=EoyEox
  • no necessarily perpendicular

Circular Polarization

  1. Eox=Eoy
  2. Δϕ=(12+n)π
EyEx=Eoycos(ωtβz+ϕx+Δϕ)Eoxcos(ωtβz+ϕx)=±EoyEoxtan(ωtβz+ϕx)

thus,

ϕ=tan1EyEx=±(ωtβz+ϕx)circular
  • necessarily perpendicular

Elliptical Polarization

  • if Δϕ>0, Ey leads Ex, (left-handed)
  • if Δϕ<0, Ey lags Ex, (right-handed)

Reflection and Transmission

Snell's Law

lossless

kisinθi=krsinθr=ktsinθt

lossy

γisinθi=γrsinθr=γtsinθt
True Angle of Refraction

Since γ is complex, sinθt and sinθr is basically complex as well.

Thus

γtr=γtsinθtx+γtcosθtz=[γtsinθt]x+[γtcosθt]z+j[[γtsinθt]x+[γtcosθt]z]
  • True angle of refraction ψβ
ψβ=tan1[γtsinθt][γtcosθt]

Polarization

Parallel Polarization

  • E is parallel to surface formed by (ki,kr,kt)

at z=0,

solve,

{Ei0cosθi+Er0cosθr=Et0cosθtHi0Hr0=Ht0

then we have

Γ=Er0Ei0=η2cosθtη1cosθiη2cosθt+η1cosθiτ=Et0Ei0=2η2cosθiη2cosθt+η1cosθi

Perpendicular Polarization

at z=0,

solve,

{Hi0cosθi+Hr0cosθr=Ht0cosθtEi0+Er0=Et0

then we have

Γ=Er0Ei0=η2cosθiη1cosθtη2cosθi+η1cosθtτ=Et0Ei0=2η2cosθiη2cosθi+η1cosθt

Brewster Angle

  • Denote as θB

  • a special θi that make no reflection.

For nonmagnetic medium (μr=1), only exists at parallel polarization.

Γ=η2cosθtη1cosθiη2cosθt+η1cosθi=0η2cosθt=η1cosθB
η22cos2θt=η12cos2θBμ2ε2(1μ1ε1μ2ε2sin2θB)=μ1ε1(1sin2θB)

for non-magnetic medium μ1=μ2=μ0

sin2θB=μ2ε2μ1ε1μ1ε1μ2ε2μ2ε2μ1ε1=μ0ε2μ0ε1ε1ε2μ0ε2μ0ε1=ε1ε2ε12ε2ε2=ε1ε21ε2(ε12ε22)=ε2ε1+ε2

then,

tanθB=ε2ε1

Normal Incidence

Power

  • incident power
Pi=12[Ei0Hi0]=12|Ei0|2[η1]
  • reflected power
Pr=12[Er0Hr0]=12|ΓEi0|2[η1]=|Γ|2Pi


Ets=Et0eγ2z=Ei0(1+Γ)eγ2zHts=Ht0eγ2z=Et0η2eγ2z=Ei0(1+Γ)η2eγ2z=Hi0η1(1+Γ)η2eγ2z=Hi0(1Γ)eγ2z

then,

Pt=12[Et0Ht0]=Pi(1+Γ)(1Γ)=α=0Pi(1|Γ|2)

Note

compare to equation (6)

PiP+PrPPtPPi+Pr=PtP++P=P