Skip to content

Heat Equation

  • 1-D heat equation
Ut=k2Ux2
  • 3-D heat equation
Ut=k(2Ux2+2Uy2+2Uz2)

Principle

  • 沒微分兩端固定 → sin
  • 兩端固定一次微分等於0 → cos

Finite Medium

take

U(x,0)=f(x)Ut(x,0)=g(x)X+λX=0T+λkT=0

沒微分兩端固定 = 0

  • 沒微分兩端固定 → sin
  • U(0,t)=U(L,t)=0
λn=n2π2L2n=1,2,3,
Xn=sin(λnx)Tn=cneλt
cn=2L0Lf(x)sin(λx)dxU(x,t)=cnsin(λx) ekλt

兩端固定一次微分等於0

  • 兩端固定一次微分等於0 → cos
  • Ux(0,t)=Ux(L,t)=0
λn=n2π2L2n=0,1,2,3,
Xn=cos(λnx)Tn=cneλtcn=2L0Lf(x)cos(λx)dxU(x,t)=12c0+n=1cncos(λx) ekλt

有 A

  • U(0,t)=0;Ux(L,t)=AU(L,t)

  • 用作圖解 tan(αL)=αA, 令解為 A1,A2,

  • 解 case 3 (case 1, case 2 are trivial)

  • f(x)=n=1cnsin(λx)
  • cn=(f(x),sin(λx))||sin(λx)||
  • 參考 Eigenfunction expansion

  • U(x,t)=n=1cnsin(λx)ekλt

兩端固定不為 0

  • U(0,t)=T1,U(L,t)=T2

  • Set U(x,t)=u(x,t)+ϕ(x)

  • Then ut=k(uxx+ϕ(x))
  • Try let ϕ(x)=0

  • solve u(x,t)


有外力

  • Ut=kUxx+F(x,t)
  • 且兩端固定為 0

  • U(x,t)= 外力修正 + 沒外力解

  • Bn(t)=2L0LF(x,t)sin(λx)dx
  • bn=0tekλ(tτ)Bn(τ) dτ
  • U(x,t)=n=1bnsin(λnx)+n=1cnsinλn ekλnt

Infinite Media

  • λn=ω2
  • U(x,t)=o[aωcos(ωx)+bωsin(ωx)]ekω2t dωaω=1πf(x)cos(ωx)dxbω=1πf(x)sin(ωx)dx

Half infinite Media

  • x(0,)