Skip to content

Potential Equation

  • Laplace's Equation
2U=02Ux2+2Uy2=02D2Ux2+2Uy2+2Uz2=03D

2D Laplaces's Equation

Polar Coordinate

  • z(x,y)=z(rcosθ,rsinθ)=U(r,θ)
  • d(tan1(u))du=11+u2
  • 2z=Urr+1rUr+1r2Uθθ

Cylindrical Coordinate

  • V(x,y,z)=V(rcosθ,rsinθ,z)=U(r,θ,z)
  • 2=Urr+1rUr+1r2Uθθ+Uzz

Spherical Coordinate

  • x=ρcos(θ)sin(ϕ)y=ρsin(θ)sin(ϕ)z=ρcos(ϕ)
  • 2V=Uρρ+2ρUρ+1ρ2sinϕUθθ+1ρ2Uϕϕ+cotϕρ2Uϕ

Dirichlet Problem

Rectangle

2U(x,y)=0
  • 一次只能解一個邊不為 0 的 case
  • 若有兩個邊以上不為 0 ,分成若干子問題來解
  • u(x,y)=u1(x,y)+u2(x,t)+

Disk

2U(rcosθ,rsinθ)=0

let

u(r,θ)=P(r) Q(θ)

then

Q+λQ=0#1 ODEr2P+rPPλ=0#2 ODE
  • characteristic eq. of ODE #2:
m2+(11)mλ=0m=±λ

Upper Half-Plane

2u(x,y)=0for <x<,y>0u(x,0)=f(x)for <x<

Quarter-Plane

2u(x,y)=0for 0<x<,y>0u(x,0)=f(x)for 0x<u(0,y)=0 for y0

convert to Upper Half-Plane problem,

let

g(x)={f(x)for x0anythingfor x<0

then solve

2u(x,y)=0for <x<,y>0u(x,0)=g(x)for <x<

Sphere in static state

  • assume u is independent of θ
Ut=2U=0

let u(ρ,ϕ)=X(ρ) Φ(ϕ)

then

Φ+cot(ϕ)Φ+λΦ=0#1 ODEρ2X+2ρXλX=0#2 ODE

solve ODE #1

  • ODE # 1 can be converted to
[(1x2)G(x)]+λG(x)=0G(x)=Φ(ϕ),(x=cos(ϕ))

which is a Legendre's Equation, then

λn=n(n+1),n=0,1,2,Φn(ϕ)=Gn(x)=Pn(cos(ϕ))

solve ODE #2

ρ2X+2ρXλX=0m2+(21)mn(n+1)=0m=(n+1), n

and finally we get,

u(ρ,ϕ)=n=0anρnPn(cos(ϕ))u(R,ϕ)=f(ϕ)=n=0anRnPn(cos(ϕ))anRn=<f(cos1(x)),Pn(x)><Pn(x),Pn(x)>
anRn=2n+1211f(cos1(x))Pn(x)dx

Neumann Problem

2u(x,y)=0for (x,y)Dun(x,y)=g(x,y)for (x,y)D
  • D 表示定義區域(面)、D 表示 boundary of D
  • un 表示對法向量微分

  • necessary condition :

Dunds=0
  • 不滿足則無解(傳說中會考)