Skip to content

Potential Equation

  • Laplace's Equation
\[ \begin{align} &\nabla^{2} U=0 \\\\ &\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^2 U}{\partial y^{2}} =0 & \text{2D} \\\\ &\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^2 U}{\partial y^{2}}+\frac{\partial^2 U}{\partial z^{2}}=0 & \text{3D} \end{align} \]

2D Laplaces's Equation

Polar Coordinate

  • \[z(x, y) = z(r\cos{\theta}, r\sin{\theta})=U(r, \theta)\]
  • \[\frac{d(\tan^{-1}(u))}{du} = \frac{1}{1+u^{2}}\]
  • \[ \begin{gather} \nabla^{2}z=U_{rr}+\frac{1}{r}U_{r}+\frac{1}{r^{2}}U_{\theta\theta} \end{gather} \]

Cylindrical Coordinate

  • \[V(x, y, z) = V(r\cos{\theta}, r\sin{\theta}, z) = U(r, \theta, z)\]
  • \[ \begin{gather} \nabla^{2}=U_{rr}+\frac{1}{r}U_{r}+\frac{1}{r^{2}}U_{\theta\theta}+U_{zz} \end{gather} \]

Spherical Coordinate

  • \[ \begin{gather} x = \rho \cos(\theta)\sin(\phi) \\\\ y = \rho \sin(\theta)\sin(\phi) \\\\ z= \rho \cos(\phi) \end{gather} \]
  • \[ \begin{gather} \nabla^{2}V = U_{\rho\rho}+\frac{2}{\rho}U_{\rho}+\frac{1}{\rho^{2}\sin\phi}U_{\theta\theta}+\frac{1}{\rho^{2}}U_{\phi\phi}+\frac{\cot\phi}{\rho^{2}}U_{\phi} \end{gather} \]

Dirichlet Problem

Rectangle

\[ \begin{gather} \nabla^{2}U(x,y) = 0 \end{gather} \]
  • 一次只能解一個邊不為 0 的 case
  • 若有兩個邊以上不為 0 ,分成若干子問題來解
  • \(u(x, y) = u_{1}(x, y) + u_{2}(x, t) + \dots\)

Disk

\[ \begin{gather} \nabla^{2}U(r\cos\theta, r\sin\theta) = 0 \end{gather} \]

let

\[u(r, \theta) = P(r)\ Q(\theta)\]

then

\[ \begin{align} & Q'' + \lambda Q = 0 & \#1 \ ODE \\\\ & r^{2}P'' + rP' - P\lambda = 0 & \#2 \ ODE \end{align} \]
  • characteristic eq. of ODE #2:
\[ \begin{gather} m^{2}+(1-1)m-\lambda=0 \\\\ \implies m = \pm \sqrt{\lambda} \end{gather} \]

Upper Half-Plane

\[ \begin{align} &\nabla^{2}u(x, y) = 0 & \text{for } -\infty < x < \infty,\quad y > 0 \\\\ &u(x, 0) = f(x) & \text{for } -\infty < x < \infty \end{align} \]

Quarter-Plane

\[ \begin{align} &\nabla^{2}u(x, y) = 0 & \text{for } 0 < x < \infty,\quad y > 0 \\\\ &u(x, 0) = f(x) & \text{for } 0 \le x < \infty \\\\ &u(0, y) = 0 & \text{ for } y \ge 0 \end{align} \]

convert to Upper Half-Plane problem,

let

\[ g(x) = \left\{ \begin{align} & f(x) & \text{for } x \geq 0 \\\\ &\text{anything} & \text{for } x <0 \end{align}\right. \]

then solve

\[ \begin{align} &\nabla^{2}u(x, y) = 0 & \text{for } -\infty < x < \infty,\quad y > 0 \\\\ &u(x, 0) = g(x) & \text{for } -\infty < x < \infty \end{align} \]

Sphere in static state

  • assume \(u\) is independent of \(\theta\)
\[ \begin{gather} \frac{\partial U}{\partial t} = \nabla^{2} U=0 \end{gather} \]

let \(u(\rho, \phi) = X(\rho)\ \Phi(\phi)\)

then

\[ \begin{align} & \Phi'' + \cot(\phi)\Phi'+\lambda\Phi = 0 & \#1\ ODE \\\\ & \rho^{2}X''+2\rho X' -\lambda X =0 & \# 2\ ODE \end{align} \]

solve ODE #1

  • ODE # 1 can be converted to
\[ \begin{gather} \left[(1-x^{2})G'(x)\right]+\lambda G(x) = 0 \\\\ G(x) = \Phi(\phi), \qquad (x = \cos(\phi)) \end{gather} \]

which is a Legendre's Equation, then

\[ \begin{gather} \lambda_{n} =n(n+1), \qquad n = 0, 1, 2, \dots \\\\ \Phi_{n}(\phi) = G_{n}(x) = P_{n}(\cos(\phi)) \end{gather} \]

solve ODE #2

\[ \begin{gather} \rho^{2}X''+2\rho X' -\lambda X =0 \\\\ m^{2}+(2-1)m- n(n+1) =0 \\\\ \implies m = -(n+1),\ n \end{gather} \]

and finally we get,

\[ \begin{gather} u(\rho, \phi) = \sum_{n=0}^{\infty}{a_{n}\rho^{n}P_{n}\big(\cos(\phi)\big)} \\\\ u(R, \phi) = f(\phi) = \sum_{n=0}^{\infty}{a_{n}R^{n}P_{n}\big(\cos(\phi)\big)} \\\\ \implies a_{n}R^{n} = \frac{<f\big(\cos^{-1}(x)\big), P_{n}(x)>}{<P_{n}(x),P_{n}(x)>} \end{gather} \]
\[ \begin{gather} a_{n}R^{n} = \frac{2n+1}{2}\int_{-1}^{1}{f(\cos^{-1}(x))P_{n}(x)dx} \end{gather} \]

Neumann Problem

\[ \begin{align} &\nabla^{2} u(x, y) = 0 & \text{for } (x, y) \in D \\\\ &\frac{\partial u}{\partial n}(x, y)= g(x, y) & \text{for } (x, y) \in \partial D \end{align} \]
  • \(D\) 表示定義區域(面)、\(\partial D\) 表示 boundary of \(D\)
  • \(\frac{\partial u}{\partial n}\) 表示對法向量微分

  • necessary condition :

\[ \begin{gather} \oint_{\partial D}{\frac{\partial u}{\partial n}ds} = 0 \end{gather} \]
  • 不滿足則無解(傳說中會考)